Citation: GU Chuan-tao, LI Guang-jun, HU Yun-qing, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Effect of calcination temperature of starch-modified silica on the performance of silica supported Cu catalyst in methanol conversion[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(11): 1328-1335. shu

Effect of calcination temperature of starch-modified silica on the performance of silica supported Cu catalyst in methanol conversion

  • Corresponding author: GAO Zhi-xian, 
  • Received Date: 8 February 2012
    Available Online: 16 April 2012

    Fund Project: 煤转化国家重点实验室开放基金(11-12-308)。 (11-12-308)

  • A series of starch-modified SiO2 (SSi-T) were obtained by calcining the extrudate of SiO2 and starch at different temperatures (T) and used as the support to prepare Cu catalysts (Cu/SSi-T, 10%) by the impregnation method. The Cu catalysts were characterized by N2 sorption, FT-IR, TG, XRD, SEM and H2-TPR; their catalytic performance in methanol conversion was investigated in a fixed bed reactor. The results indicated that starch can reduce the removal rate of silanol groups (Si-OH) from the surface of the support during calcination and the surface silanol groups are beneficial to the dispersion of Cu species. The calcination temperature of starch-modified SiO2 exhibits a significant influence on the surface silanol (Si-OH) concentration, the surface area and porous structure of the support; as a result, it may be used to adjust the size of supported CuO crystal grains and dispersion of Cu species, which determine the performance of the silica supported Cu catalysts in methanol conversion.
  • 加载中
    1. [1]

      [1] 朱洪法. 催化剂载体制备与应用技术[M]. 北京: 石油工业出版社, 2003: 6-17. (ZHU Hong-fa. Preparation and application of catalyst carrier[M]. Beijing: Petroleum Industry Press, 2003: 6-17.)

    2. [2]

      [2] ILER R K. The Chemistry of silica, solubility, polymerization, colloid, and surface properties and biochemistry[M]. New York: Wiley-Interscience, 1979: 622-654.

    3. [3]

      [3] 史泰尔斯A B. 催化剂载体与负载型催化剂[M]. 李大东, 钟孝湘译. 北京: 中国石化出版社, 1992: 59-65. (STILES A B. Catalytic support and supported catalyst[M]. trans LI Da-zhong, ZHONG Xiao-xiang. Beijing: Chemical Industry Press, 1992: 59-65.)

    4. [4]

      [4] POLSHETTIWAR V, MOLNAR A. Silica-supported Pd catalysts for Heck coupling reactions[J]. Tetrahedron, 2007, 63(30): 6949-6976.

    5. [5]

      [5] POLSHETTIWAR V, LEN C. Silica-supported palladium: Sustainable catalysts for cross-coupling reactions[J]. Coord Chem Rev, 2009, 253(21/22): 2599-2626.

    6. [6]

      [6] PULLUKAT T J, HOFF R E. Silica-based Ziegler-Natta catalysts: A patent review[J]. Catal Rev-Sci Eng, 1999, 41(3/4): 389-428.

    7. [7]

      [7] 潘履让. 固体催化剂的设计与制备[M]. 天津: 南开大学出版社, 1993: 89-91. (PAN Lv-rang. Design and preparation of solid catalysts[M]. Tianjin: Nankai University Press, 1993: 89-91.)

    8. [8]

      [8] KRIJN P. Synthesis of solid catalysts[M]. Weinheim: WILEY-VCH Verlag GmbH & Co.KGaA, 2009: 7-10.

    9. [9]

      [9] OLAH G A. Beyond oil and gas: The methanol economy[J]. Angew Chem Int Ed, 2005, 44(18): 2636-2639.

    10. [10]

      [10] SÁ S, SILVA H, BRANDO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B, 2010, 99(1/2): 43-57.

    11. [11]

      [11] SCHRADER J, SCHILLING M, HOLTMANN D, SELL D, FILHO M V, MARX A, VORHOLT J A. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria[J]. Trends Biotechnol, 2009, 27(2): 107-115.

    12. [12]

      [12] BASRI S, KAMARUDIN S K, DAUD W R W, YAAKUB Z. Nanocatalyst for direct methanol fuel cell (DMFC) [J]. In J Hydrogen Energy, 2010, 35(15): 7957-7970.

    13. [13]

      [13] KIM H Y, LEE H M, PALA R G S, METIU H. Oxidative dehydrogenation of methanol to formaldehyde by isolated vanadium, molybdenum, and chromium oxide clusters supported on rutile TiO2(110)[J]. J Physi Chem C, 2009, 113(36): 16083-16093.

    14. [14]

      [14] MINYUKOVA T P, SIMENTSOVA I I, KHASIN A V, SHTERTSER N V, BARONSKAYA N A, KHASSIN A A, YURIEVA T M. Dehydrogenation of methanol over copper-containing catalysts[J]. Appl Catal, A, 2002, 237(1/2): 171-180.

    15. [15]

      [15] AI M. Dehydrogenation of methanol to methyl formate over copper-based catalysts[J]. Appl Catal, 1984, 11(2): 259-270.

    16. [16]

      [16] SODESAWA T, NAGACHO M, ONODERA A, NOZAKI F. Dehydrogenation of methanol to methyl formate over Cu-SiO2 catatysts prepared by ion exchange method[J]. J Catal, 1986, 102(2): 460-463.

    17. [17]

      [17] ZHURAVLEV L T. Concentration of hydroxyl-groups on the surface of amorphous silicas[J]. Langmuir, 1987, 3(3): 316-318.

    18. [18]

      [18] ZHURAVLEV L T. Characterization of amorphous silica surface[J]. React Kinet Catal Lett, 1993, 50(1/2): 15-25.

    19. [19]

      [19] WU C C. Adsorption property of silican dioxidehybrid starch material to dyes[J]. Environ Sci Technol, 2011, 34(9): 162-165.

    20. [20]

      [20] 阮建明, 王亚东, 伍秋美, 周忠诚. 单分散球形SiO2的制备及其分散体系的流变性能[J]. 中南大学学报 自然科学版, 2007, 38(5): 825-829. (UAN Jian-ming, WANG Ya-dong, WU Qiu-mei, ZHOU Zhong-cheng. Preparation of monodisperse spherical SiO2 and rheological property of its suspension[J]. Journal of Central South University(Science and Technology), 2007, 38(5): 825-829.)

    21. [21]

      [21] WILLIAMS D H, FLEMING I. 有机化学中的光谱方法[M]. 王剑波, 施卫峰译. 北京: 北京大学出版社, 2001: 23-44. (WILLIAMS D H, FLEMING I. Spectroscopic methods in organic chemistry[M]. trans WANG Jian-bo, SHI Wei-feng. Beijing: Peking University Press, 2001: 23-44)

    22. [22]

      [22] GUERREIRO E D, GORRIZ O F, RIVAROLA J B, ARRUA L A. Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation[J]. Appl Catal A, 1997, 165(1/2): 259-271.

    23. [23]

      [23] GUERREIRO E D, GORRIZ O F, Larsen G, ARRUA L A. Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation -A comparative study using different preparation techniques[J]. Appl Catal A, 2000, 204(1): 33-48.

    24. [24]

      [24] ZHANG R, SUN Y H, PENG S Y. Dehydrogenation of methanol to methyl formate over CuO-SiO2 gel catalyst[J]. React Kinet Catal Lett, 1999, 67(1): 95-102.

    25. [25]

      [25] 张荣. 铜基催化剂的表面结构和甲醇脱氢反应选择性的调控. 太原: 中国科学院山西煤炭化学研究所, 1999 (ZHANG Rong. Surface properties of copper catalysts and control of the selectivity of methanol dehydrogenation. Taiyuan: Institute of Coal Chemistry, CAS, 1999)

    26. [26]

      [26] TAKAHASHI K, TAKEZAWA N, KOBAYASHI H. Mechanism of formation of methyl formate from formaldehyde over copper catalysts[J]. Chem Lett, 1983, 7: 1061-1064.

  • 加载中
    1. [1]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    9. [9]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    11. [11]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

Metrics
  • PDF Downloads(0)
  • Abstract views(524)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return