Citation:
GU Chuan-tao, LI Guang-jun, HU Yun-qing, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Effect of calcination temperature of starch-modified silica on the performance of silica supported Cu catalyst in methanol conversion[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(11): 1328-1335.
-
A series of starch-modified SiO2 (SSi-T) were obtained by calcining the extrudate of SiO2 and starch at different temperatures (T) and used as the support to prepare Cu catalysts (Cu/SSi-T, 10%) by the impregnation method. The Cu catalysts were characterized by N2 sorption, FT-IR, TG, XRD, SEM and H2-TPR; their catalytic performance in methanol conversion was investigated in a fixed bed reactor. The results indicated that starch can reduce the removal rate of silanol groups (Si-OH) from the surface of the support during calcination and the surface silanol groups are beneficial to the dispersion of Cu species. The calcination temperature of starch-modified SiO2 exhibits a significant influence on the surface silanol (Si-OH) concentration, the surface area and porous structure of the support; as a result, it may be used to adjust the size of supported CuO crystal grains and dispersion of Cu species, which determine the performance of the silica supported Cu catalysts in methanol conversion.
-
-
-
[1]
[1] 朱洪法. 催化剂载体制备与应用技术[M]. 北京: 石油工业出版社, 2003: 6-17. (ZHU Hong-fa. Preparation and application of catalyst carrier[M]. Beijing: Petroleum Industry Press, 2003: 6-17.)
-
[2]
[2] ILER R K. The Chemistry of silica, solubility, polymerization, colloid, and surface properties and biochemistry[M]. New York: Wiley-Interscience, 1979: 622-654.
-
[3]
[3] 史泰尔斯A B. 催化剂载体与负载型催化剂[M]. 李大东, 钟孝湘译. 北京: 中国石化出版社, 1992: 59-65. (STILES A B. Catalytic support and supported catalyst[M]. trans LI Da-zhong, ZHONG Xiao-xiang. Beijing: Chemical Industry Press, 1992: 59-65.)
-
[4]
[4] POLSHETTIWAR V, MOLNAR A. Silica-supported Pd catalysts for Heck coupling reactions[J]. Tetrahedron, 2007, 63(30): 6949-6976.
-
[5]
[5] POLSHETTIWAR V, LEN C. Silica-supported palladium: Sustainable catalysts for cross-coupling reactions[J]. Coord Chem Rev, 2009, 253(21/22): 2599-2626.
-
[6]
[6] PULLUKAT T J, HOFF R E. Silica-based Ziegler-Natta catalysts: A patent review[J]. Catal Rev-Sci Eng, 1999, 41(3/4): 389-428.
-
[7]
[7] 潘履让. 固体催化剂的设计与制备[M]. 天津: 南开大学出版社, 1993: 89-91. (PAN Lv-rang. Design and preparation of solid catalysts[M]. Tianjin: Nankai University Press, 1993: 89-91.)
-
[8]
[8] KRIJN P. Synthesis of solid catalysts[M]. Weinheim: WILEY-VCH Verlag GmbH & Co.KGaA, 2009: 7-10.
-
[9]
[9] OLAH G A. Beyond oil and gas: The methanol economy[J]. Angew Chem Int Ed, 2005, 44(18): 2636-2639.
-
[10]
[10] SÁ S, SILVA H, BRANDO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B, 2010, 99(1/2): 43-57.
-
[11]
[11] SCHRADER J, SCHILLING M, HOLTMANN D, SELL D, FILHO M V, MARX A, VORHOLT J A. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria[J]. Trends Biotechnol, 2009, 27(2): 107-115.
-
[12]
[12] BASRI S, KAMARUDIN S K, DAUD W R W, YAAKUB Z. Nanocatalyst for direct methanol fuel cell (DMFC) [J]. In J Hydrogen Energy, 2010, 35(15): 7957-7970.
-
[13]
[13] KIM H Y, LEE H M, PALA R G S, METIU H. Oxidative dehydrogenation of methanol to formaldehyde by isolated vanadium, molybdenum, and chromium oxide clusters supported on rutile TiO2(110)[J]. J Physi Chem C, 2009, 113(36): 16083-16093.
-
[14]
[14] MINYUKOVA T P, SIMENTSOVA I I, KHASIN A V, SHTERTSER N V, BARONSKAYA N A, KHASSIN A A, YURIEVA T M. Dehydrogenation of methanol over copper-containing catalysts[J]. Appl Catal, A, 2002, 237(1/2): 171-180.
-
[15]
[15] AI M. Dehydrogenation of methanol to methyl formate over copper-based catalysts[J]. Appl Catal, 1984, 11(2): 259-270.
-
[16]
[16] SODESAWA T, NAGACHO M, ONODERA A, NOZAKI F. Dehydrogenation of methanol to methyl formate over Cu-SiO2 catatysts prepared by ion exchange method[J]. J Catal, 1986, 102(2): 460-463.
-
[17]
[17] ZHURAVLEV L T. Concentration of hydroxyl-groups on the surface of amorphous silicas[J]. Langmuir, 1987, 3(3): 316-318.
-
[18]
[18] ZHURAVLEV L T. Characterization of amorphous silica surface[J]. React Kinet Catal Lett, 1993, 50(1/2): 15-25.
-
[19]
[19] WU C C. Adsorption property of silican dioxidehybrid starch material to dyes[J]. Environ Sci Technol, 2011, 34(9): 162-165.
-
[20]
[20] 阮建明, 王亚东, 伍秋美, 周忠诚. 单分散球形SiO2的制备及其分散体系的流变性能[J]. 中南大学学报 自然科学版, 2007, 38(5): 825-829. (UAN Jian-ming, WANG Ya-dong, WU Qiu-mei, ZHOU Zhong-cheng. Preparation of monodisperse spherical SiO2 and rheological property of its suspension[J]. Journal of Central South University(Science and Technology), 2007, 38(5): 825-829.)
-
[21]
[21] WILLIAMS D H, FLEMING I. 有机化学中的光谱方法[M]. 王剑波, 施卫峰译. 北京: 北京大学出版社, 2001: 23-44. (WILLIAMS D H, FLEMING I. Spectroscopic methods in organic chemistry[M]. trans WANG Jian-bo, SHI Wei-feng. Beijing: Peking University Press, 2001: 23-44)
-
[22]
[22] GUERREIRO E D, GORRIZ O F, RIVAROLA J B, ARRUA L A. Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation[J]. Appl Catal A, 1997, 165(1/2): 259-271.
-
[23]
[23] GUERREIRO E D, GORRIZ O F, Larsen G, ARRUA L A. Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation -A comparative study using different preparation techniques[J]. Appl Catal A, 2000, 204(1): 33-48.
-
[24]
[24] ZHANG R, SUN Y H, PENG S Y. Dehydrogenation of methanol to methyl formate over CuO-SiO2 gel catalyst[J]. React Kinet Catal Lett, 1999, 67(1): 95-102.
-
[25]
[25] 张荣. 铜基催化剂的表面结构和甲醇脱氢反应选择性的调控. 太原: 中国科学院山西煤炭化学研究所, 1999 (ZHANG Rong. Surface properties of copper catalysts and control of the selectivity of methanol dehydrogenation. Taiyuan: Institute of Coal Chemistry, CAS, 1999)
-
[26]
[26] TAKAHASHI K, TAKEZAWA N, KOBAYASHI H. Mechanism of formation of methyl formate from formaldehyde over copper catalysts[J]. Chem Lett, 1983, 7: 1061-1064.
-
[1]
-
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[2]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[3]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[4]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[5]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[6]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[7]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[8]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[9]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[10]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[11]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[12]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[13]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[14]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[15]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[16]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[17]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[18]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[19]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[20]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(525)
- HTML views(22)