Citation: WANG Qi, GUO Lei, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, LIU He. Hydrogen donor visbreaking of Venezuelan vacuum residue[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(11): 1317-1322. shu

Hydrogen donor visbreaking of Venezuelan vacuum residue

  • Corresponding author: WANG Zong-xian, 
  • Received Date: 15 June 2012
    Available Online: 16 August 2012

    Fund Project: 中国石油天然气股份有限公司委内瑞拉超重油减黏基础研究(供氢热裂化)项目(W2008E-1502/2) (供氢热裂化)项目(W2008E-1502/2)中央高校基本科研业务专项资金支助(12CX06041A)。 (12CX06041A)

  • Hydrogen donor visbreaking and conventional visbreaking processes of vacuum residue of Venezuelan synthetic crude oil were investigated in an autoclave. Phase changes of the two reaction systems were observed by a microscope during the thermal conversion. The stabilities of two kinds of visbroken oil were characterized and their SARA group compositions were analyzed. The results show that amorphous micro-particles’ formation, growth and aggregation can be observed clearly by the microscope with the increasing of time at 425℃. Resins and asphaltenes contents in two visbroken oils are both decrease. Compared to conventional visbreaking process, hydrogen donor in hydrogen donor visbreaking process can inhibit the growth of amorphous micro-particles to postpone the phase separation. Moreover, hydrogen donor can inhibit the coke formation and improve the stability of visbroken oil.
  • 加载中
    1. [1]

      [1] HEAD I M, JONES D M, LARTER S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature,2003, 426(6964): 344-352.

    2. [2]

      [2] 穆龙新, 韩国庆, 徐宝军. 委内瑞拉奥里诺科重油带地质与油气资源储量[J]. 石油勘探与开发, 2009, 36(6):784-789. (MU Long-xin, HAN Guo-qing, XU Bao-jun. Geology and reserve of the Orinoco heavy oil belt, Venezuela[J]. Petroleum Exploration and Development, 2009, 36(6): 784-789.)

    3. [3]

      [3] 姚国欣. 委内瑞拉超重原油和加拿大油砂沥青加工现状及发展前景[J]. 中外能源, 2012, 17(1): 3-22. (YAO Guo-xin. Current status and delevelopment propects for processing of Venezuelan extra-heavy crude and Canadian oil sand bitumen[J]. Sino-Global Energy, 2012, 17(1): 3-22.)

    4. [4]

      [4] HASAN S W, GHANNAM M T, ESMAIL N. Heavy crude oil viscosity reduction and rheology for pipeline transportation[J]. Fuel, 2010, 89(5): 1095-1100.

    5. [5]

      [5] 王齐, 王宗贤, 沐宝泉. 委内瑞拉常压渣油供氢热转化研究[J]. 燃料化学学报, 2012, 40(10): 1200-1205. (WANG Qi, WANG Zong-xian, MU Bao-quan. Hydrogen donor visbreaking of Venezuelan atmospheric residue[J]. Journal of Fuel Chemistry and Technology,2012, 40(10): 1200-1205.)

    6. [6]

      [6] 李春年. 渣油加工工艺[M]. 北京: 中国石化出版社, 2002. (LI Chun-nian.Residue processing technology[M]. Beijing: Sinopec Press, 2002.)

    7. [7]

      [7] WIEHE I A. A phase-separation kinetic model for coke formation[J]. Ind Eng Chem Res, 1993, 32(11): 2447-2454.

    8. [8]

      [8] WIEHE I A. A solvent-resid phase diagram for tracking resid conversion[J]. Ind Eng Chem Res, 1992, 32(2): 530-536.

    9. [9]

      [9] 李生华, 刘晨光, 阙国和. 渣油热反应体系中第二液相的存在性: Ⅰ渣油热反应体系中的相分离[J]. 燃料化学学报, 1996, 24(6): 473-479. (LI Sheng-hua, LIU Chen-guang, QUE Guo-he. Occurrence of the second liquid phase in the thermal reaction system of vacuum redisua: ⅠPhase separation in the thermal reaction system of vacuum residua[J]. Journal of Fuel Chemistry and Technology, 1996, 24(6): 473-479.)

    10. [10]

      [10] 李生华, 刘晨光. 渣油热反应体系中第二液相的存在性: Ⅱ第二液相及其表征[J]. 燃料化学学报, 1997, 25(1):1-6. (LI Sheng-hua, LIU Chen-guang. Occurrence of the second liquid phase in the thermal reaction system of vacuum redisua: ⅡSecond liquid phase and its characterization[J]. Journal of Fuel Chemistry and Technology, 1997, 25(1): 1-6.)

    11. [11]

      [11] 李生华, 刘晨光. 渣油热反应中第二液相的形成机制[J]. 燃料化学学报,1998, 26(5): 423-430. (LI Sheng-hua, LIU Chen-guang. Formation mechanisms of second liquid phases in thermal reaction systems of vacuum residua[J]. Journal of Fuel Chemistry and Technology, 1998, 26(5): 423-430.)

    12. [12]

      [12] 张会成, 邓文安. 胜利渣油在掺兑物下热反应体系的相态分离行为[J]. 燃料化学学报, 1997, 25(3): 227-232. (ZHANG Hui-cheng, DENG Wen-an. Phase separation behaviors of Shengli vacuum residue in thermal reaction system with liquid blends[J]. Journal of Fuel Chemistry and Technology, 1997, 25(3): 227-232.)

    13. [13]

      [13] 梁文杰. 石油化学[M]. 东营: 中国石油大学出版社, 2009. (LIANG Wen-jie. Petroleum chemistry[M]. Dongying: China University of Petroleum Press, 2009.)

    14. [14]

      [14] 梁文杰, 阙国和, 陈月珠. 我国原油减压渣油的化学组成与结构——Ⅰ减压渣油的化学组成[J].石油学报(石油加工), 1991, 7(3): 1-7. (LIANG Wen-jie, QUE Guo-he, CHEN Yue-zhu. Chemical composition and structure of vacuum residua of Chinese crudes: ⅠChemical composition of vacuum residua[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1991, 7(3): 1-7.)

    15. [15]

      [15] SH/T 0509-98, 重油四组分测定法[S]. (SH/T 0509-98, Test method for separation of asphalt into four fractions[S].)

    16. [16]

      [16] SINGH I D, KOTHIYAL V, RAMASWAMY V. Characteristic changes of asphaltenes during visbreaking of North Gujarat short residue[J]. Fuel, 1990, 69(3): 289-292.

    17. [17]

      [17] 王宗贤, 何岩, 郭爱军. 辽河和孤岛渣油供氢与生焦趋势[J]. 燃料化学学报, 1999, 27(3): 251-255. (WANG Zong-xian, HE Yan, GUO Ai-jun. Study on hydrogen-donating ability of vacuum residues and their subfractions[J]. Journal of Fuel Chemistry and Technology, 1999, 27(3): 251-255.)

    18. [18]

      [18] 杨嘉谟, 陈月珠, 梁文杰. 辽河欢喜岭稠油减压渣油的热转化[J]. 石油大学学报 (自然科学版), 1989, 6(13):56-64. (YANG Jia-mo, CHEN Yue-zhu, LIANG Wen-jie. Thermal conversion of vacuum residue from Huanxiling crude oil in Liaohe oilfield[J]. Journal of the University of Petroleum, China, 1989, 6(13): 56-64.)

    19. [19]

      [19] MOURA L G M, SANTOS M F P, ZILIO E L. Evaluation of indices and of models applied to the prediction of the stability of crude oils[J]. J Petrol Sci Eng, 2010, 74(1/2): 77-87.

    20. [20]

      [20] 张龙力, 杨国华, 张庆轩. 渣油胶体稳定性与热反应生焦性能的关系[J]. 石油化工高等学校学报, 2005, 18(1):4-6. (ZHANG Long-li, YANG Guo-hua, ZHANG Qing-xuan. The relationship between the colloidal stability and thermal reaction characteristics of residues[J]. Journal of Petrochemical Universities, 2005, 18(1): 4-6.)

    21. [21]

      [21] 郭爱军, 王宗贤, 张会军. 减压渣油掺炼工业供氢剂缓和热转化的基础研究[J]. 燃料化学学报, 2008, 35(6):667-672. (GUO Ai-jun, WANG Zong-xian, ZHANG Hui-jun. Fundamental study on mild thermal cracking of vacuum residue with industrial hydrogen donors[J]. Journal of Fuel Chemistry and Technology, 2008, 35(6): 667-672.)

  • 加载中
    1. [1]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    2. [2]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    3. [3]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    4. [4]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    6. [6]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    9. [9]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    10. [10]

      Xinyan Chen Meng Xiao Fei Cai Junxian Guo Tianfeng Chen Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(0)
  • Abstract views(549)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return