Citation:
WANG Qi, GUO Lei, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, LIU He. Hydrogen donor visbreaking of Venezuelan vacuum residue[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(11): 1317-1322.
-
Hydrogen donor visbreaking and conventional visbreaking processes of vacuum residue of Venezuelan synthetic crude oil were investigated in an autoclave. Phase changes of the two reaction systems were observed by a microscope during the thermal conversion. The stabilities of two kinds of visbroken oil were characterized and their SARA group compositions were analyzed. The results show that amorphous micro-particles’ formation, growth and aggregation can be observed clearly by the microscope with the increasing of time at 425℃. Resins and asphaltenes contents in two visbroken oils are both decrease. Compared to conventional visbreaking process, hydrogen donor in hydrogen donor visbreaking process can inhibit the growth of amorphous micro-particles to postpone the phase separation. Moreover, hydrogen donor can inhibit the coke formation and improve the stability of visbroken oil.
-
Keywords:
- vacuum residue,
- hydrogen donor,
- thermal conversion,
- phase separation,
- spot test
-
-
-
[1]
[1] HEAD I M, JONES D M, LARTER S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature,2003, 426(6964): 344-352.
-
[2]
[2] 穆龙新, 韩国庆, 徐宝军. 委内瑞拉奥里诺科重油带地质与油气资源储量[J]. 石油勘探与开发, 2009, 36(6):784-789. (MU Long-xin, HAN Guo-qing, XU Bao-jun. Geology and reserve of the Orinoco heavy oil belt, Venezuela[J]. Petroleum Exploration and Development, 2009, 36(6): 784-789.)
-
[3]
[3] 姚国欣. 委内瑞拉超重原油和加拿大油砂沥青加工现状及发展前景[J]. 中外能源, 2012, 17(1): 3-22. (YAO Guo-xin. Current status and delevelopment propects for processing of Venezuelan extra-heavy crude and Canadian oil sand bitumen[J]. Sino-Global Energy, 2012, 17(1): 3-22.)
-
[4]
[4] HASAN S W, GHANNAM M T, ESMAIL N. Heavy crude oil viscosity reduction and rheology for pipeline transportation[J]. Fuel, 2010, 89(5): 1095-1100.
-
[5]
[5] 王齐, 王宗贤, 沐宝泉. 委内瑞拉常压渣油供氢热转化研究[J]. 燃料化学学报, 2012, 40(10): 1200-1205. (WANG Qi, WANG Zong-xian, MU Bao-quan. Hydrogen donor visbreaking of Venezuelan atmospheric residue[J]. Journal of Fuel Chemistry and Technology,2012, 40(10): 1200-1205.)
-
[6]
[6] 李春年. 渣油加工工艺[M]. 北京: 中国石化出版社, 2002. (LI Chun-nian.Residue processing technology[M]. Beijing: Sinopec Press, 2002.)
-
[7]
[7] WIEHE I A. A phase-separation kinetic model for coke formation[J]. Ind Eng Chem Res, 1993, 32(11): 2447-2454.
-
[8]
[8] WIEHE I A. A solvent-resid phase diagram for tracking resid conversion[J]. Ind Eng Chem Res, 1992, 32(2): 530-536.
-
[9]
[9] 李生华, 刘晨光, 阙国和. 渣油热反应体系中第二液相的存在性: Ⅰ渣油热反应体系中的相分离[J]. 燃料化学学报, 1996, 24(6): 473-479. (LI Sheng-hua, LIU Chen-guang, QUE Guo-he. Occurrence of the second liquid phase in the thermal reaction system of vacuum redisua: ⅠPhase separation in the thermal reaction system of vacuum residua[J]. Journal of Fuel Chemistry and Technology, 1996, 24(6): 473-479.)
-
[10]
[10] 李生华, 刘晨光. 渣油热反应体系中第二液相的存在性: Ⅱ第二液相及其表征[J]. 燃料化学学报, 1997, 25(1):1-6. (LI Sheng-hua, LIU Chen-guang. Occurrence of the second liquid phase in the thermal reaction system of vacuum redisua: ⅡSecond liquid phase and its characterization[J]. Journal of Fuel Chemistry and Technology, 1997, 25(1): 1-6.)
-
[11]
[11] 李生华, 刘晨光. 渣油热反应中第二液相的形成机制[J]. 燃料化学学报,1998, 26(5): 423-430. (LI Sheng-hua, LIU Chen-guang. Formation mechanisms of second liquid phases in thermal reaction systems of vacuum residua[J]. Journal of Fuel Chemistry and Technology, 1998, 26(5): 423-430.)
-
[12]
[12] 张会成, 邓文安. 胜利渣油在掺兑物下热反应体系的相态分离行为[J]. 燃料化学学报, 1997, 25(3): 227-232. (ZHANG Hui-cheng, DENG Wen-an. Phase separation behaviors of Shengli vacuum residue in thermal reaction system with liquid blends[J]. Journal of Fuel Chemistry and Technology, 1997, 25(3): 227-232.)
-
[13]
[13] 梁文杰. 石油化学[M]. 东营: 中国石油大学出版社, 2009. (LIANG Wen-jie. Petroleum chemistry[M]. Dongying: China University of Petroleum Press, 2009.)
-
[14]
[14] 梁文杰, 阙国和, 陈月珠. 我国原油减压渣油的化学组成与结构——Ⅰ减压渣油的化学组成[J].石油学报(石油加工), 1991, 7(3): 1-7. (LIANG Wen-jie, QUE Guo-he, CHEN Yue-zhu. Chemical composition and structure of vacuum residua of Chinese crudes: ⅠChemical composition of vacuum residua[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1991, 7(3): 1-7.)
-
[15]
[15] SH/T 0509-98, 重油四组分测定法[S]. (SH/T 0509-98, Test method for separation of asphalt into four fractions[S].)
-
[16]
[16] SINGH I D, KOTHIYAL V, RAMASWAMY V. Characteristic changes of asphaltenes during visbreaking of North Gujarat short residue[J]. Fuel, 1990, 69(3): 289-292.
-
[17]
[17] 王宗贤, 何岩, 郭爱军. 辽河和孤岛渣油供氢与生焦趋势[J]. 燃料化学学报, 1999, 27(3): 251-255. (WANG Zong-xian, HE Yan, GUO Ai-jun. Study on hydrogen-donating ability of vacuum residues and their subfractions[J]. Journal of Fuel Chemistry and Technology, 1999, 27(3): 251-255.)
-
[18]
[18] 杨嘉谟, 陈月珠, 梁文杰. 辽河欢喜岭稠油减压渣油的热转化[J]. 石油大学学报 (自然科学版), 1989, 6(13):56-64. (YANG Jia-mo, CHEN Yue-zhu, LIANG Wen-jie. Thermal conversion of vacuum residue from Huanxiling crude oil in Liaohe oilfield[J]. Journal of the University of Petroleum, China, 1989, 6(13): 56-64.)
-
[19]
[19] MOURA L G M, SANTOS M F P, ZILIO E L. Evaluation of indices and of models applied to the prediction of the stability of crude oils[J]. J Petrol Sci Eng, 2010, 74(1/2): 77-87.
-
[20]
[20] 张龙力, 杨国华, 张庆轩. 渣油胶体稳定性与热反应生焦性能的关系[J]. 石油化工高等学校学报, 2005, 18(1):4-6. (ZHANG Long-li, YANG Guo-hua, ZHANG Qing-xuan. The relationship between the colloidal stability and thermal reaction characteristics of residues[J]. Journal of Petrochemical Universities, 2005, 18(1): 4-6.)
-
[21]
[21] 郭爱军, 王宗贤, 张会军. 减压渣油掺炼工业供氢剂缓和热转化的基础研究[J]. 燃料化学学报, 2008, 35(6):667-672. (GUO Ai-jun, WANG Zong-xian, ZHANG Hui-jun. Fundamental study on mild thermal cracking of vacuum residue with industrial hydrogen donors[J]. Journal of Fuel Chemistry and Technology, 2008, 35(6): 667-672.)
-
[1]
-
-
-
[1]
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
-
[2]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[3]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[4]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[5]
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
-
[6]
Shui Hu , Houjin Li , Zhenming Zang , Lianyun Li , Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[8]
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
-
[9]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[10]
Xinyan Chen , Meng Xiao , Fei Cai , Junxian Guo , Tianfeng Chen , Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105
-
[11]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[12]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[13]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[14]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[15]
Yongmei Liu , Lisen Sun , Yongmei Hao , Zhanxiang Liu , Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144
-
[16]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[17]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[18]
Daming Zhang , Zhiwei Niu , Qiang Jin , Zongyuan Chen , Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058
-
[19]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[20]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(549)
- HTML views(34)