Citation: LIU Peng-fei, ZHANG Yong-qi, FANG Yi-tian. Gasification kinetics of extraction residue char from Shenhua direct liquefaction residue[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(11): 1281-1288. shu

Gasification kinetics of extraction residue char from Shenhua direct liquefaction residue

  • Corresponding author: ZHANG Yong-qi, 
  • Received Date: 20 April 2012
    Available Online: 12 June 2012

  • Thermo-gravimetric analysis was employed to study gasification kinetics of three coal direct liquefaction extract residue chars under steam and CO2 atmosphere. Gasification kinetics of liquefaction residue char was compared at the same conditions. It is shown that temperature plays a significant role on residue char gasification. The decreasing degree of order for carbon and increasing pore structure in residue chars due to supercritical solvent extraction improve gasification reactivity of residue chars. Due to the lack of pore structure, the experimental results of residue chars during steam gasification and CO2 gasification can be well described by the chemical reaction control shrinking core model.
  • 加载中
    1. [1]

      [1] 刘振宇. 煤直接液化技术发展的化学脉络及化学工程挑战[J].化工进展, 2010, 29(2): 193-197. (LIU Zhen-yu. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chemical Industry and Engineering Progress, 2010, 29(2):193-197.)

    2. [2]

      [2] 楚希杰. 神华煤直接液化残渣热解和气化反应性基础研究.太原: 中国科学院山西煤炭化学研究所,2008. (CHU Xi-jie. Pyrolysis and gasification characteristic of Shenhua coal direct liquification residue. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2008.)

    3. [3]

      [3] 吴秀章, 张胜振, 李克健, 舒歌平, 李丽. 煤直接液化残渣的萃取方法以及萃取物的应用:中国,201010299540. 2011-02-02. (WU Xiu-zhang, ZHANG Sheng-zhen, LI Ke-jian, SHU Ge-ping, LI Li. The extraction method of coal direct liquification residue and the application of the extracts: CN, 201010299540. 2011-02-02.)

    4. [4]

      [4] 盛英,李克健,朱晓苏,李文博. 煤液化残留物制备中间相沥青[J]. 煤炭学报, 2009, 34(8): 1125-1128. (SHENG Ying, LI Ke-jian, ZHU Xiao-su, LI Wen-bo. Preparation of mesophase pitch using coal liquefaction residue[J]. Journal of China Coal Society, 2009, 34(8):1125-1128.)

    5. [5]

      [5] 刘朋飞, 张永奇, 房倚天, 赵建涛. 神华煤直接液化残渣超临界溶剂萃取研究[J]. 燃料化学学报, 2012, 40(7): 776-781. (LIU Peng-fei, ZHANG Yong-qi, FANG Yi-tian, ZHAO Jian-tao. Supercritical solvent extraction of direct liquefaction residue from Shenhua coal[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 776-781.)

    6. [6]

      [6] REN H, ZHANG Y, FANG Y, WANG Y. Co-gasification behavior of meat and bone meal char and coal char[J]. Fuel Process Technol, 2011, 92(3): 298-307.

    7. [7]

      [7] TAKARADA T, TAMAI Y, TOMITA A. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985, 64(10): 1438-1442.

    8. [8]

      [8] WALKER P L, KINI K A. Measurement of the ultrafine surface area of coals[J]. Fuel, 1965, 44: 453-459.

    9. [9]

      [9] GAN H, NANDI S P, WALKER P L. Nature of the porosity in American coals[J]. Fuel, 1972, 51(4): 272-277.

    10. [10]

      [10] WEN C Y. Noncatalytic heterogeneous solid fluid reaction models[J]. Ind Eng Chem, 1968, 60(9): 34-54.

    11. [11]

      [11] LEVENSPIEL O. Chemical reaction engineering[M]. 3rd Ed. New York: John Wiley & Sons, 1999: 185-188.

    12. [12]

      [12] SENNECA O, SALATINO P, MASI S. Microstructural changes and loss of gasification reactivity of chars upon heat treatment[J]. Fuel, 1998, 77(13): 1483-1493.

    13. [13]

      [13] 高晓晴. 高导炭/炭复合材料的制备及其性能和结构的研究. 太原:中国科学院山西煤炭化学研究所, 2002. (GAO Xiao-qing. Preparation of carbon/carbon composites with high thermal conductivity and their properties and microstructure.Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2002.)

    14. [14]

      [14] LJUBISA R R, PHILIP L W, ROBERT G J. Importance of carbon active sites in the gasification of coal chars[J]. Fuel, 1983, 62(7): 849-856.

    15. [15]

      [15] KEVIN A D, ROBERT H H, NANCY Y Y, THOMAS J H. Evolution of char chemistry, crystallinity, and ultrafine structure during pulverized-coal combustion[J]. Combust Flame, 1995, 100(1/2): 31-40.

    16. [16]

      [16] 张林仙. 中国典型无烟煤焦气化特性的研究.太原: 中国科学院山西煤炭化学研究所, 2008. (ZHANG Lin-xian. Study on the gasification reactivity of typical Chinese anthracite chars.Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2008.)

    17. [17]

      [17] DUTTA S, WEN C Y, BELT R J. Reactivity of coal and char:1 In carbon dioxide atmosphere[J]. Ind Eng Chem Process Des Dev, 1977, 16(1): 20-30.

    18. [18]

      [18] ZHANG L, HUANG J, FANG Y, WANG Y. Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO2 [J]. Energy Fuels, 2006, 20(3): 1201-1210.

  • 加载中
    1. [1]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    4. [4]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    5. [5]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(0)
  • Abstract views(590)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return