Citation: ZHANG Hai-ru, LIU Hao, WANG Meng, WU Hao, YANG Hong-min. Experimental study on mercury removal by Taixi activated coke under complex atmosphere of flue gases[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1269-1275. shu

Experimental study on mercury removal by Taixi activated coke under complex atmosphere of flue gases

  • Corresponding author: YANG Hong-min, 
  • Received Date: 13 December 2011
    Available Online: 28 February 2012

    Fund Project: 国家自然科学基金 (50976049) (50976049) 江苏省自然科学基金(BK2011788)。 (BK2011788)

  • In order to clarify the adsorption characteristic of activated coke under complex atmosphere of flue gases, a series of tests were conducted with a bench-scale fixed bed reactor. The simulated flue gas was prepared by mixing main composition of flue gas with mercury vapors generated through permeation tube. The surface properties were characterized by FT-IR. The results show that the performance of mercury removal is related to the surface chemistry of activated coke,and the oxygen-containing functional groups are the important factor affecting the adsorption and catalysis of Hg0. The adsorption performance of Hg0 with activated coke is influenced by SO2 obviously and inhibition is observed in the removal process. With increasing concentration of SO2, from 400, 855 to 1 520 mL/m3, the concentration of Hg0 at the outlet of the reactor increased from 36, 43 to 48 μg/m3. The complex impact of NO on the adsorptive capacity of Hg0 is found that NO with lower concentration promotes the adsorption of elemental mercury while inhibits it at higher value in CO2/N2/O2/NO/Hg0 system. The increasing concentration of NO with the stationary concentration of SO2 has a promotion to mercury adsorption while O2, NO, SO2 and Hg0 exists simultaneously. However, the increasing concentration of SO2 could enhance the mercury adsorption at initial stage and prevents it at the latter stage.
  • 加载中
    1. [1]

      [1] YUDOVICH Y E, KETRIS M P. Mercury in coal a review: Part 2 Coal use and environmental problems[J]. Int J Coal Geol, 2005, 62(3): 135-165.

    2. [2]

      [2] 况敏, 杨国华, 胡文佳, 陈武军. 燃煤电厂烟气脱汞技术现状分析与展望[J]. 环境科学与技术, 2008, 31(5): 66-70. (KUANG Min, YANG Guo-hua, HU Wen-jia, CHEN Wu-jun. Analysis and prospect of technology for removing mercury from flue gas[J]. Environmental Science & Technology, 2008, 31(5): 66-70.)

    3. [3]

      [3] ZENG H C, JIN F, GUO J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon[J]. Fuel, 2004, 83(1): 143-146.

    4. [4]

      [4] 任建莉, 周劲松, 骆仲泱, 岑可法. 活性碳吸附烟气中气态汞的试验研究[J]. 中国电机工程学报, 2004, 24(2): 171-175. (REN Jian-li, ZHOU Jin-song, LUO Zhong-yang, CEN Ke-fa. An experimental study on activated carbon sorbents for gas-phase mercury removal from flue gas[J]. Proceedings of the CSEE, 2004, 24(2): 171-175.)

    5. [5]

      [5] 任建莉, 周劲松, 骆仲泱, 徐璋, 张雪梅. 钙基类吸附剂脱除烟气中气态汞的试验研究[J]. 燃料化学学报, 2006, 34(5): 556-561. (REN Jian-li, ZHOU Jin-song, LUO Zhong-yang, XU Zhang, ZHANG Xue-mei. Ca-based sorbents for mercury vapor removal from flue gas[J]. Journal of Fuel Chemistry and Technology, 2006, 34(5): 556-561.)

    6. [6]

      [6] MORENCY J R, PANAGIOTOU T, SENIOR C L. Zeolite sorbent that effectively removes mercury from flue gases [J]. Filtrat Sep, 2002, 39(7): 24-26.

    7. [7]

      [7] MILLER S J, DUNHAM G E, OLSON E S, BROWN T D. Flue gas effects on a carbon-based mercury sorbent[J]. Fuel Process Technol, 2000, 65-66: 343-363.

    8. [8]

      [8] LIU W, VIDIC R D, BROWN T D. Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon [J]. Environ Sci Technol, 2000, 34(1): 154-159.

    9. [9]

      [9] YAN R, LIANG D T, TSEN L, WONG Y P, LEE Y K. Bench-scale experimental evaluation of carbon performance on mercury vapor adsorption[J]. Fuel, 2004, 83(18): 2401-2409.

    10. [10]

      [10] 张斌, 侯文慧, 范朋慧, 杨蒙, 杨宏旻. 工艺参数对活性焦烟气中联合脱硫脱汞性能的交互影响[J]. 煤炭学报, 2010, 35(9): 1548-1552. (ZHANG Bin, HOU Wen-hui, FAN Peng-hui, YANG Meng, YANG Hong-min. Interactive effect of operation parameters on the combined removal of SO2 and mercury in flue gas using activated coke[J]. Journal of China Coal Society, 2010, 35(9): 1548-1552.)

    11. [11]

      [11] 李兰廷. 活性焦脱硫脱硝的机理研究-烟气组成的影响[J]. 煤炭学报, 2010, 35(增刊): s185-s189. (LI Lan-ting. Mechanism of removal of SO2 and NO on activated coke: Effect of component of flue gas on activated coke[J]. Journal of China Coal Society, 2010, 35( Suppl): s185-s189.)

    12. [12]

      [12] GUERRA D L, AIROLDI C, VIANA R R. Performance of modified montmorillonite clay in mercury adsorption process and thermodynamic studies [J]. Inorg Chem Commun, 2008, 11(1): 20-23.

    13. [13]

      [13] WASEWAR K L, PRASAD B, GULIPALLI S. Removal of selenium by adsorption onto granular activated carbon (GAC) and powdered activated carbon (PAC)[J]. Clean-soil Air Water, 2009, 37(11): 872-883.

    14. [14]

      [14] SONG X L, LIU H Y, CHENG L, QU Y X.Surface modification of coconut-based activated carbon by liquid-phase oxidation and it effects on lead ion adsorption[J]. Desalination, 2010, 255(1/3): 78-83.

    15. [15]

      [15] LI Y H, LEE C W, GULLETT B K. The effect of activated carbon surface moisture on low temperature mercury adsorption[J]. Carbon, 2002, 40(1): 65-72.

    16. [16]

      [16] SWANEPOEL J C, STRYDOM C A. Utilization of fly ash in a geopolymeric material[J]. Appl Geochem, 2002, 17(8): 1143-1148.

    17. [17]

      [17] 金峰, 曾汗才, 钟毅, 张鹏宇, 许绿丝. 颗粒活性炭对汞的吸附实验研究[J]. 电力科学与工程, 2003, (1): 1-4. (JIN Feng, ZENG Han-cai, ZHONG Yi, ZHANG Peng-yu, XU Lü-si. Experimental investigation on mercury adsorption by granular activated carbons[J]. Electric Power Science and Engineering, 2003, (1): 1-4.)

    18. [18]

      [18] 黄正宏, 康飞宇, 吴惠, 梁开明. 湿氧化改性多孔碳对低浓度苯和丁酮蒸气的吸附[J]. 清华大学学报(自然科学版), 2000, 40(10): 111-115. (HUANG Zheng-hong, KANG Fei-yu, WU Hui, LIANG Kai-ming. Adsorption of benzene and methylethyl ketone vapors at low concentration by wet oxidized porous carbons[J]. Journal of Tsinghua University(Science and Technology), 2000, 40(10): 111-115.)

    19. [19]

      [19] MATIJEVIC E, COUCH J P, KERKER M. Detection of metal ion hydrolysis by coagulation IV zinc[J]. J Phys Chem, 1962, 66(1): 111-116.

    20. [20]

      [20] LI Y H, LEE C W, GULLETT B K.Importance of activated carbons oxygen surface functional groups on elemental mercury adsorption [J]. Fuel, 2003, 82(4): 451-457.)

    21. [21]

      [21] PRESTO A A, GRANITE E J. Impact of sulfur oxides on mercury capture by activated carbon[J]. Environ Sci Technol, 2007, 41(18): 6579-6584.

    22. [22]

      [22] PRESTO A A, GRANITE E J, KARASH A. Further investigation of the impact of sulfur oxides on mercury capture by activated carbon[J]. Ind Eng Chem Res, 2007, 46(24): 8273-8276.

    23. [23]

      [23] 杨宏旻, 张斌, 侯文慧, 周强, 叶碧翠, 余刚. 负载CuO/Cl活性炭的气态汞脱除特性[J]. 南京航空航天大学学报, 41(6): 814-818. (YANG Hong-min, ZHANG Bin, HOU Wen-hui, ZHOU Qiang, YE Bi-cui, YU Gang.Removal characteristics of vapour-phase elemental mercury through active Carbon-Supported CuO/Cl[J]. Journal of Nanjing University of Aeronautics & Astronautics, 41(6): 814-818.)

    24. [24]

      [24] 许绿丝. 改性处理活性炭纤维吸附氧化脱除SO2/NOx/Hg的研究. 武汉: 华中科技大学, 2007. (XU Lü-si. Study on adsorption and oxidation removal of SO2/NOx/Hg at low-temperature by modified activated carbon fiber.Wuhan:Huazhong University of Science and Technology, 2007.)

    25. [25]

      [25] SHIRAHAMA N, MOCHIDA I, KORAI Y. Reaction of NO2 in air at room temperature with urea supported on pitch based activated carbon fiber [J]. Appl Catal B, 2004, 52(3): 173-179.

    26. [26]

      [26] SHIRAHAMA N, MOCHIDA I, KORAI Y. Reaction of NO with urea supported on activated carbons[J]. Appl Catal B, 2005, 57(4): 237-245.

    27. [27]

      [27] OLSON E S, MILLER S J, SHARMA R K. Catalytic effects of carbon sorbents for mercury capture[J]. J Hazard Mater, 2000, 74(1): 61-79.

    28. [28]

      [28] SHARMA R K, DUNHAM G E, SHARMA R K, MILLER S J. Mechanisms of mercury capture and breakthrough on activated carbon sorbents.[C]//National Meeting of the American Chemical Society. Washington DC: American Chemical Society, Division of Fuel Chemistry, 2000: 886-889.

    29. [29]

      [29] LAUMB J D, BENSON S A, OLSON E S. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry[J]. Fuel Process Technol, 2004, 85(6/7): 577-585.

    30. [30]

      [30] OLSON E S, SHARMA R K, MILLER S J, DUNHAM G E. Identification of the breakthrough oxidized mercury species from sorbents in flue gas[C]//Proceedings of the Specialty Conference on Mercury in the Environment. Minneapolis, MN: 1999: 121- 126.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    9. [9]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    15. [15]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

Metrics
  • PDF Downloads(0)
  • Abstract views(1017)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return