Citation: WANG Mei, ZHANG Li-qi, LIU Hao, ZHANG Jun-ying, ZHENG Chu-guang. Studies on CO2 absorption performance by imidazole-based ionic liquid mixtures[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1264-1268. shu

Studies on CO2 absorption performance by imidazole-based ionic liquid mixtures

  • Corresponding author: ZHANG Li-qi, 
  • Received Date: 28 April 2012
    Available Online: 14 July 2012

    Fund Project: 国家自然科学基金(51076056, 51021065) (51076056, 51021065) 国家重点基础研究发展规划(973计划, 2011CB707301) (973计划, 2011CB707301) 煤燃烧国家重点实验室开放基金(FSKLCC1111)。 (FSKLCC1111)

  • Conventional and functional imidazole-based ionic liquids (abbr. ILs) were mixed based on their advantage and disadvantage on CO2 reduction. Additionally, CO2 absorption effect and regeneration performance of imidazole-based IL mixtures were discussed. It was showed that imidazole-based IL mixtures had good fluidity and smooth of transferring CO2. It had better absorption capacity of CO2 for the mixtures of [bmim][BF4] (or [bmim][Tf2N]) and [NH2e-mim][BF4] than the single IL, and lower absorption capacity for the mixtures of [bmim][CH3CO2] and [NH2e-mim][BF4] than [bmim][CH3CO2]. While the cation of conventional imidazolium ILs became longer and the mixtures could absorb CO2 more obviously, more strong effect was shown on CO2 absorption with the anion [Tf2N] than the anion [BF4] for the conventional imidazolium IL. CO2 absorption capacity of the imidazole-based IL mixtures had maintained 75%~85% of the initial capacity during 10 times of the absorption/regeneration cycles, while the quality of the regeneration was unchanged.
  • 加载中
    1. [1]

      [1] 郑楚光. 温室效应及其控制对策[M]. 北京:中国电力出版社,2001: 16-26. (ZHENG Chu-guang. The greenhouse effect and control countermeasures[M]. Beijing: China Power Press, 2001: 16-26.)

    2. [2]

      [2] FIGUEROA J D, FOUT T, PLASYNSKI S, MCILVRIED H, SRIVASTAVA R D. Advances in CO2 capture technology- The U. S. Department of Energy’s Carbon Sequestration Program[J]. J Greenhouse Gas Control, 2008, 2: 9-20.

    3. [3]

      [3] LIM B-H, CHOE W-H, SHIM J-J, RA C S, TUME D, LEE H, LEE C S. High-pressure solubility of carbon dioxide in imidazolium-based ionic liquids with anions and [J]. Korean J Chem Eng, 2009, 26(4): 1130-1136.

    4. [4]

      [4] 张锁江, 吕兴梅. 离子液体——从基础研究到工业应用[M]. 北京: 科学出版社, 2006: 408-427. (ZHANG Suo-jiang, LV Xing-mei. Ionic liquid——from basic research to industrial application[M]. Beijing: Science Press, 2006: 408-427.)

    5. [5]

      [5] BLANCHARDL A, HANCU D, BECKMAN E B, BRENNECKE J F. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399(6731):28-29.

    6. [6]

      [6] ZHU X, LU Y-X, PENG C-J, HU J, LIU H-L, HU Y. Halogen bonding interactions between brominated ion pairs and CO2 molecules: implications for design of new and efficient ionic liquids for CO2 absorption[J]. J Phys Chem B, 2011, 115(14): 3949-3958.

    7. [7]

      [7] SHFLETT M B, KASPRZAK D J, JUNK C P, YOKOZEKI. A Phase behavior of {carbon dioxide + } mixtures[J]. J Chem Thermodynamics, 2008, 40(1): 25-31.

    8. [8]

      [8] HUANG J, RIISAGER A, BERG R W, FEHRMANN R. Tuning ionic liquids for high gas solubility and reversible gas absorption [J]. J Mol Catal A, 2008, 297(2): 170-176.

    9. [9]

      [9] PENNLINE H W, LUEBKE D R, JONES K L, MYERS C R, MORSI B I, HEINTZ Y J, ILCONICHJ B. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources[J]. Fuel Process Technol, 2008, 89(9): 897-907.

    10. [10]

      [10] GOODRICH B F, de la FUENTE J C, GURKAN B E, ZADIGIAN D J, PRICE E A, HUANG Y, BRENNECKE J F. Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide[J]. Ind Eng Chem Res, 2011, 50(1): 111-118.

    11. [11]

      [11] BATES E D, MAYTON R D, NTAI I, DAVIS J H, Jr. CO2 capture by a task-specific ionic liquid[J]. J Am Chem Soc, 2002, 124(6): 926-927.

    12. [12]

      [12] C HEN J, MA J-T, JI Y, SUN X-Q. Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation[J]. J Rare Earths, 2009, 27(6): 932-936.

    13. [13]

      [13] YUE Q-C, FENG L,YAN Q-P, GONG H-S. Preparation and characterization of amino or carboxyl-functionalized ionic liquids[J]. Chin Chem Lett, 2007, 18(1): 21-23.

    14. [14]

      [14] ANTHONY J L, ANDERSON J L, MAGINN E J, BRENNECKE J F. Anion effects on gas solubility in ionic liquids[J]. J Phys Chem B, 2005, 109(13): 6366-6374.

    15. [15]

      [15] SCOVAZZO P, CAMPER D, KIEFT J, POSHUSTAJ, KOVAL C, NOBLE R. Regular solution theory and CO2 gas solubility in room temperature ionic liquids[J]. Ind Eng Chem Res, 2004, 43(21): 6855-6860.

    16. [16]

      [16] AKI S N V K, MELLEIN B R, SAURER E M, BRENNECKE J F. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids [J]. J Phys Chem B, 2004, 108(52): 20355-20365.

    17. [17]

      [17] WANG G, HOU W, XIAO F, GENG J, WU Y, ZHANG Z. Low-viscosity triethylbutyl ammonium acetate as a task-specific ionic liquid for reversible CO2 absorption[J]. J Chem Eng Data, 2011, 56(4): 1125-1133.

    18. [18]

      [18] SCHREINER C, ZUGMANN S, HARTL R, GORESH J. Fractional walden rule for ionic liquids: Examples from recent measurements and a critique of the so-called ideal KCl line for the walden plot[J]. J Chem Eng Data, 2010, 55(5): 1784-1788.

    19. [19]

      [19] MULDOON M J, AKI S N V K, ANDERSON J L, DIXON J K, BRENNECKE J F. Improving carbon dioxide solubility in ionic liquids[J]. J Phys Chem B, 2007, 111(30): 9001-9009.

  • 加载中
    1. [1]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    2. [2]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    9. [9]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    12. [12]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    13. [13]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    19. [19]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    20. [20]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

Metrics
  • PDF Downloads(0)
  • Abstract views(554)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return