Citation:
WANG Mei, ZHANG Li-qi, LIU Hao, ZHANG Jun-ying, ZHENG Chu-guang. Studies on CO2 absorption performance by imidazole-based ionic liquid mixtures[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(10): 1264-1268.
-
Conventional and functional imidazole-based ionic liquids (abbr. ILs) were mixed based on their advantage and disadvantage on CO2 reduction. Additionally, CO2 absorption effect and regeneration performance of imidazole-based IL mixtures were discussed. It was showed that imidazole-based IL mixtures had good fluidity and smooth of transferring CO2. It had better absorption capacity of CO2 for the mixtures of [bmim][BF4] (or [bmim][Tf2N]) and [NH2e-mim][BF4] than the single IL, and lower absorption capacity for the mixtures of [bmim][CH3CO2] and [NH2e-mim][BF4] than [bmim][CH3CO2]. While the cation of conventional imidazolium ILs became longer and the mixtures could absorb CO2 more obviously, more strong effect was shown on CO2 absorption with the anion [Tf2N] than the anion [BF4] for the conventional imidazolium IL. CO2 absorption capacity of the imidazole-based IL mixtures had maintained 75%~85% of the initial capacity during 10 times of the absorption/regeneration cycles, while the quality of the regeneration was unchanged.
-
-
-
[1]
[1] 郑楚光. 温室效应及其控制对策[M]. 北京:中国电力出版社,2001: 16-26. (ZHENG Chu-guang. The greenhouse effect and control countermeasures[M]. Beijing: China Power Press, 2001: 16-26.)
-
[2]
[2] FIGUEROA J D, FOUT T, PLASYNSKI S, MCILVRIED H, SRIVASTAVA R D. Advances in CO2 capture technology- The U. S. Department of Energy’s Carbon Sequestration Program[J]. J Greenhouse Gas Control, 2008, 2: 9-20.
-
[3]
[3] LIM B-H, CHOE W-H, SHIM J-J, RA C S, TUME D, LEE H, LEE C S. High-pressure solubility of carbon dioxide in imidazolium-based ionic liquids with anions and [J]. Korean J Chem Eng, 2009, 26(4): 1130-1136.
-
[4]
[4] 张锁江, 吕兴梅. 离子液体——从基础研究到工业应用[M]. 北京: 科学出版社, 2006: 408-427. (ZHANG Suo-jiang, LV Xing-mei. Ionic liquid——from basic research to industrial application[M]. Beijing: Science Press, 2006: 408-427.)
-
[5]
[5] BLANCHARDL A, HANCU D, BECKMAN E B, BRENNECKE J F. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399(6731):28-29.
-
[6]
[6] ZHU X, LU Y-X, PENG C-J, HU J, LIU H-L, HU Y. Halogen bonding interactions between brominated ion pairs and CO2 molecules: implications for design of new and efficient ionic liquids for CO2 absorption[J]. J Phys Chem B, 2011, 115(14): 3949-3958.
-
[7]
[7] SHFLETT M B, KASPRZAK D J, JUNK C P, YOKOZEKI. A Phase behavior of {carbon dioxide + } mixtures[J]. J Chem Thermodynamics, 2008, 40(1): 25-31.
-
[8]
[8] HUANG J, RIISAGER A, BERG R W, FEHRMANN R. Tuning ionic liquids for high gas solubility and reversible gas absorption [J]. J Mol Catal A, 2008, 297(2): 170-176.
-
[9]
[9] PENNLINE H W, LUEBKE D R, JONES K L, MYERS C R, MORSI B I, HEINTZ Y J, ILCONICHJ B. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources[J]. Fuel Process Technol, 2008, 89(9): 897-907.
-
[10]
[10] GOODRICH B F, de la FUENTE J C, GURKAN B E, ZADIGIAN D J, PRICE E A, HUANG Y, BRENNECKE J F. Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide[J]. Ind Eng Chem Res, 2011, 50(1): 111-118.
-
[11]
[11] BATES E D, MAYTON R D, NTAI I, DAVIS J H, Jr. CO2 capture by a task-specific ionic liquid[J]. J Am Chem Soc, 2002, 124(6): 926-927.
-
[12]
[12] C HEN J, MA J-T, JI Y, SUN X-Q. Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation[J]. J Rare Earths, 2009, 27(6): 932-936.
-
[13]
[13] YUE Q-C, FENG L,YAN Q-P, GONG H-S. Preparation and characterization of amino or carboxyl-functionalized ionic liquids[J]. Chin Chem Lett, 2007, 18(1): 21-23.
-
[14]
[14] ANTHONY J L, ANDERSON J L, MAGINN E J, BRENNECKE J F. Anion effects on gas solubility in ionic liquids[J]. J Phys Chem B, 2005, 109(13): 6366-6374.
-
[15]
[15] SCOVAZZO P, CAMPER D, KIEFT J, POSHUSTAJ, KOVAL C, NOBLE R. Regular solution theory and CO2 gas solubility in room temperature ionic liquids[J]. Ind Eng Chem Res, 2004, 43(21): 6855-6860.
-
[16]
[16] AKI S N V K, MELLEIN B R, SAURER E M, BRENNECKE J F. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids [J]. J Phys Chem B, 2004, 108(52): 20355-20365.
-
[17]
[17] WANG G, HOU W, XIAO F, GENG J, WU Y, ZHANG Z. Low-viscosity triethylbutyl ammonium acetate as a task-specific ionic liquid for reversible CO2 absorption[J]. J Chem Eng Data, 2011, 56(4): 1125-1133.
-
[18]
[18] SCHREINER C, ZUGMANN S, HARTL R, GORESH J. Fractional walden rule for ionic liquids: Examples from recent measurements and a critique of the so-called ideal KCl line for the walden plot[J]. J Chem Eng Data, 2010, 55(5): 1784-1788.
-
[19]
[19] MULDOON M J, AKI S N V K, ANDERSON J L, DIXON J K, BRENNECKE J F. Improving carbon dioxide solubility in ionic liquids[J]. J Phys Chem B, 2007, 111(30): 9001-9009.
-
[1]
-
-
-
[1]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[2]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
-
[3]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[4]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[5]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[6]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[7]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[8]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[9]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[10]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[11]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[12]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[13]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[14]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[15]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[16]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[19]
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
-
[20]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(554)
- HTML views(110)