Citation: SONG Hua, ZHANG Yong-jiang, SONG Hua-lin, DAI Min. Effect of citric acid on hydrodesulfurization performance of the supported nickel phosphide catalyst[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1246-1251. shu

Effect of citric acid on hydrodesulfurization performance of the supported nickel phosphide catalyst

  • Corresponding author: SONG Hua, 
  • Received Date: 8 February 2012
    Available Online: 12 April 2012

    Fund Project: 国家自然科学基金(21276048)。 (21276048)

  • The TiO2-Al2O3 complex support was prepared by the sol-gel method. A nickel phosphide catalyst, Ni2P/TiO2-Al2O3 with citric acid (CA) as chelating agent, was prepared by the impregnation method. The catalysts were characterized by X-ray diffraction (XRD), N2-adsorption specific surface area measurements (BET), thermogravimetry-differential thermal analysis (TG-DTA), temperature programmed reduction (TPR) and transmission electron microscope (TEM). The effects of different chelating agents and CA addition for dibenzothiophene (DBT) hydrodesulfurization (HDS) were studied. The result showed that the addition of appropriate amount of CA into the catalyst can enrich the pores of Ni2P/TiO2-Al2O3 catalyst, increase the surface area, which made better pore structure, higher dispersion of metal active component and more uniform size of the active component. CA can weaken the interaction between the active phase and the support, resulting in an apparent decrease in reduction temperature for nickel and phosphorus precursor as well as promotion of the formation of the Ni-P-O active phase. At reaction temperature of 360℃, pressure of 3.0 MPa, hydrogen/oil ratio of 500(volume ratio), liquid hourly space velocity of 2.0 h-1 and reaction time of 4 h, the initial dibenzothiophene conversion was 99.5% and stabilized at about 95.0% during 48 h reaction.
  • 加载中
    1. [1]

      [1] 刘理华, 李广慈, 刘 迪, 柳云骐, 刘晨光. 过渡金属磷化物的制备和催化性能研究[J]. 化学进展, 2010, 22(9): 1701-1708. ( LIU Li-hua, LI Guang-ci, LIU Di, LIU Yun-qi, LIU Chen-guang. Preparation and catalytic performance of the transition metal phosphides[J]. Progressin Chemistry, 2010, 22(9): 1701-1708.)

    2. [2]

      [2] SILVA D C C, CROSNIER O, OUVARD G, GREEDAN J, SAFA-SEFAT A, NAZAR L F. Reversible lithium uptake by FeP2[J]. Electrochem Solid-State Lett, 2003, 6(8): A162-A165.

    3. [3]

      [3] PRALONG V, SOUZA D C S, LEUNG K T, NAZAR L F. Reversible lithium uptake by CoP3 at low potential: Role of the anion[J]. Electrochem Commun, 2002, 4(6): 516-520.

    4. [4]

      [4] FAN X Y, KE F S, WEI G Z, HUANG L, SUN S G. Sn-Co alloy anode using porous Cu as current collector for lithium ion battery[J]. Alloys Compd, 2009, 476(1/2): 7-73.

    5. [5]

      [5] CRUZ M, MORALES J, SANCHEZ L, SANTOS-PENA J, MARTÍN F. Electrochemical properties of electrodeposited nicked phosphide thin films in lithium cells[J]. J Power Sources, 2007, 171(2): 870-878.

    6. [6]

      [6] YANG L C, GUO W L, SHI Y, WU Y P. Graphite@MoO3 composite as anode material for lithium ion battery in propylene carbonate-based electrolyte[J]. Alloys Compd, 2010, 501(2): 218-220.

    7. [7]

      [7] ZHANG C Q, TU J P, HUANG X H, YUAN Y F, CHEN X T, MAO F. Preparation and electrochemical performances of cubic shape Cu2O as anode material for lithium ion batteries[J]. Alloys Compd, 2007, 441(1/2): 52-56.

    8. [8]

      [8] SAWHILL S J, PHILLIPS D C, BUSSELL M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts[J]. J Catal, 2003, 215(2): 208-219.

    9. [9]

      [9] STINNER C, TANG Z, HAOUAS M, WEBER TH, PRINS R. Preparation and 31P NMR characterization of nickel phosphides on silica[J]. J Catal, 2002, 208(2): 456-466.

    10. [10]

      [10] 李冬燕, 余夕志, 陈长林, 徐南平,王延儒. Ni2P/TiO2上噻吩加氢脱硫性能研究[J]. 高校化学工程学报, 2006, 20(5): 825-830. (LI Dong-yan, YU Xi-zhi, CHEN Chang-lin, XU Nan-ping, WANG Yan-ru. Hydrodesulfurization of thiophene over TiO2 supported nickel phosphide catalysts[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(5): 825-830.)

    11. [11]

      [11] OYAMA S T. Novel catalysts for advanced hydroprocessing: transition metal phosphides[J]. J Catal, 2003, 216(1/2): 343-352.

    12. [12]

      [12] 张媛, 李增喜, 闻学兵, 刘 源. 柠檬酸络合法制备NiO-CeO2-TiO2复合氧化物及其在甲烷部分氧化反应中的应用[J]. 催化学报, 2005, 26(2): 1059-1066. (ZHANG Yuan, LI Zeng-xi, WEN Xue-bing, LIU Yuan. Partial Oxidation of Methane over NiO-CeO2-TiO2 Catalysts Prepared by Citric Acid Method[J]. Chinese Jourhal of Catalysis, 2005, 26(2): 1059-1066.)

    13. [13]

      [13] 祝新利, 刘昌俊, 张月萍. 分子筛酸性增强方法研究进展[J]. 现代化工, 2004, 24(2): 12-15. (ZHU Xin-li, LIU Chang-jun, ZHANG Yue-ping. Progress in enhancement of zeolite- acidity[J]. Modern Chemical Industry, 2004, 24(2): 12-15.

    14. [14]

      [14] 陈俊任, 周亚松. 柠檬酸对Ni-W焦化蜡油加氢处理催化剂性能的影响[J]. 化工学报, 2007, 58(9): 2244-2248. (CHEN Jun-ren, ZHOU Ya-song. Effect of citric acid on Ni-W catalysts for hydrotreatment of coking gas oil[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(9): 2244-2248.)

    15. [15]

      [15] 宋华, 郭云涛, 李锋, 于洪坤. Ni2P/TiO2-Al2O3催化剂的制备及其加氢脱硫、脱氮性能[J]. 物理化学学报, 2010, 26(9): 2461–2467. (SONG Hua, GUO Yun-tao, LI Feng, YU Hong-kun. Preparation, Hydrodesulfurization and Hydrodenitrogenation Performance of a Ni2P/TiO2-Al2O3 Catalyst[J]. Acta Phys-Chim Sin, 2010, 26(9): 2461-2467.)

    16. [16]

      [16] 宋华, 于洪坤, 武显春, 郭云涛. TiO2-Al2O3载体的制备及Ni2P/TiO2-Al2O3催化剂上的同时加氢脱硫和加氢脱氮反应[J]. 催化学报, 2010, 31(4): 447-453. (SONG Hua, YU Hong-kun, WU Xian-chun, GUO Yun-tao. Preparation of TiO2-Al2O3 Support and Simultaneous Hydrodesulfurization and Hydrodenitrogenation over Ni2P/TiO2-Al2O3 Catalyst[J]. Chinese Journal of Catalgsis, 2010, 31(4): 447-453.)

    17. [17]

      [17] 刘志红, 王豪, 鲍晓军. 提高柴油加氢精制催化剂活性的方法[J]. 化工进展, 2008, 27(2): 173-179. (LIU Zhi-hong, WANG Hao, BAO Xiao-jun. Methods for improving the activity of diesel hydrotreating catalysts[J]. Chemical Inddustry and Engineering Progress, 2008, 27(2): 173-179.)

    18. [18]

      [18] 周顺, 徐迎波, 王程辉, 田振峰. 柠檬酸的热解特性[J]. 烟草化学, 2011, 9(9): 45-49. (ZHOU Shun, XU Ying-bo, WANG Cheng-hui, TIAN Zhen-feng. Pyrolytic Behavior of Citric Acid[J]. Tobacco Chemistry, 2011, 9(9): 45-49.)

    19. [19]

      [19] LIN Y, XIE T, CHENG B C, GENG B Y, ZHANG L D. Ordered nickel oxide nanowire arrays and their optical absorption properties[J]. Chem Phys Lett, 2003, 380(5/6): 521-525.

    20. [20]

      [20] 张智宏, 王玉峰, 张少瑜. 用柠檬酸通过固相反应法制备氧化镍[J]. 机械工程材料, 2010, 34(1): 49-51. (ZHANG Zhi-hong, WANG Yu-feng, ZHANG Shao-yu. Nickel Oxide Prepared by Solid State Reaction with Citric Acid [J]. Materials for Mechanical Engineering, 2010, 34(1): 49-51.)

    21. [21]

      [21] WANG R, SMITH K. The effect of preparation conditions on the properties of high-surface area Ni2P catalysts[J]. Appl Catal A, 2010, 380(1/2): 149-164.

    22. [22]

      [22] STINNER C, TANG Z, HAOUAS M, WEBER TH, PRINS R. Preparation and 31P NMR Characterization of Nickel Phosphides on Silica[J]. J Catal, 2002, 208(2): 456-466.

    23. [23]

      [23] WANG A J, RUAN L F, TENG Y, LI X, LU M H, REN J, WANG Y, HU Y K. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts[J]. J Catal, 2005, 229(2): 314-321.

    24. [24]

      [24] 余夕志, 王远强, 陈长林, 徐南平, 王延儒. Ni2P/TiO2的制备及其对苯加氢反应的催化性能[J]. 燃料化学学报, 2006, 34(1): 100-104. (YU Xi-zhi, WANG Yuan-qiang, CHEN Chang-lin, XU Nan-ping, WANG Yan-ru. Preparation of Ni2P/TiO2 catalyst and its reactivity for benzene hydrogenation[J]. Journal of Fuel Chemistry and Technology. 2006, 34(1): 100-104.)

    25. [25]

      [25] 聂红, 龙湘云, 刘清河, 李大东. 柠檬酸对NiW/Al2O3加氢脱硫催化剂硫化行为的影响[J]. 石油学报(石油加工), 2010, 26(3): 329-335. (NIE Hong, LONG Xiang-yun, LIU Qing-he, LI Da-dong. Effect of citric acid on sulfidation behavior of NiW/Al2O3 hydrodesulfurization catalyst[J]. Acta Petrolei Sinica(Petroleum Processing Section). 2010, 26(3): 329-335.)

    26. [26]

      [26] 牛振江, 郁平, 王费华, 李则林, 吴延华. 柠檬酸对Ni-P合金化学镀沉积速度和镀层性能的影响[J]. 电镀与涂饰, 2003, 22(5): 23-26. (NIU Zheng-jiang, YU Ping, WANG Fei-hua, LI Ze-lin, WU Yan-hua. Effects of citric acid on electroless Ni-P alloy deposition rate and properties[J]. Electroplating & Finishing, 2003, 22(5): 23-26.)

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(648)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return