Citation: LI Juan, HAI Hang, YAN Chang-feng, HU Rong-rong, YAO Zhi-wei, LUO Wei-min, GUO Chang-qing, LI Wen-bo. Effect of calcination temperature on properties of Cu/ZnO/Al2O3/ Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1240-1245. shu

Effect of calcination temperature on properties of Cu/ZnO/Al2O3/ Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether

  • Corresponding author: YAN Chang-feng, 
  • Received Date: 20 February 2012
    Available Online: 4 May 2012

    Fund Project: 国家自然科学基金(20806082, 50306026) (20806082, 50306026) 广东省自然科学基金(10151007006000016)。 (10151007006000016)

  • The Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5 performances for hydrogen production during dimethyl ether steam reforming (DME SR) were investigated,which was prepared by the co-precipitation coupling with mechanical mixing method.Meanwhile, the effect of calcination temperature on the physicochemical properties of catalysts were studied by thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, and H2 temperature-programmed reduction.It was revealed that Cu/ZnO/Al2O3/Cr2O3 catalyst was decomposed at 400℃ to form CuO and sponel phase that played a key role in separating the Cu during the reaction.Under lower calcination temperatures,the catalyst was incompeletely decomposed.Increasing the calcination temperature to over 500℃ caused severe sintering of CuO and facilitated the formation of spinel phase, which led to a significant decrease in the number of active sites.When the calcination temperature was controlled at 400℃, the biggest DME conversion rate of 92.9% and hydrogen yield of 76.5% was reached.
  • 加载中
    1. [1]

      [1] DELUGA G A, SALGE J R, SCHMIDT L D, VERYKIO X E. Renewable hydrogen from ethanol by autothermal reforming[J]. Science, 2004, 303(5660): 993-997.

    2. [2]

      [2] WINTER C J. Hydrogen energy- abundant, efficient, clean: A debate over the energy-system-of-change[J]. Int J Hydrogen Energy, 2009, 34(14): s1-s52.

    3. [3]

      [3] ARCOUMANIS C, BAE C, CROOKES R, KINOSHITA E. The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: A review[J]. Fuel, 2008, 87(7): 1014-1030.

    4. [4]

      [4] ALEXEY S, CHAN K. Progress in development of direct dimethyl ether fuel cells [J]. Appl Catal B, 2009, 91(1/2): 1-10.

    5. [5]

      [5] 左宜赞, 张强, 安欣, 韩明汉, 王铁锋, 王金福, 金涌. 浆态床中Cu/ZnO/Al2O3/ZrO2 +γ-Al2O3 双功能催化剂一步法合成二甲醚 [J]. 燃料化学学报, 2010, 38(1): 102-107. (ZUO Yi-zan, ZHANG Qiang, AN Xin, HAN Ming-han, WANG Tie-feng, WANG Jin-fu, JIN Yong. Single-step dimethyl ether synthesison a Cu/ZnO/Al2O3/ZrO2 +γ-Al2O3 bifunctional catalyst in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 102-107.)

    6. [6]

      [6] 钱伯章. 二甲醚的技术进展与市场分析 [J]. 石油与天然气化工, 2004, 33(5): 324-332. (QIAN Bo-zhang. Technology progress and market analysis of dimethyl ether [J]. Chemical Engineering of Oil & Gas, 2004, 33(5): 324-332.)

    7. [7]

      [7] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.

    8. [8]

      [8] 李超, 李琢, 李建青, 杨成, 吴晋沪. 一步法合成二甲醚整体式催化剂的制备及反应性能研究[J]. 燃料化学学报, 2011, 39(4): 287-292. (LI Chao, LI Zhuo, LI Jian-qing, YANG Cheng, WU Jin-hu. Preparation and catalytic properties of a monolithic catalyst for one step synthesis of dimethyl ether [J]. Journal of Fuel Chemistry and Technology, 2011, 39(4): 287-292.)

    9. [9]

      [9] TOMOAKI M, TOSHIVA N, HIROVOSHI K, KAZUNORI U, YASUVUKI M, SEIICHIRO I. Steam reforming of dimethyl ether over H-mordenite-Cu/CeO2 catalysts[J]. Appl Catal A, 2006, 276(1/2): 267-273.

    10. [10]

      [10] SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Role of acidity on the hydrolysis of dimethyl ether (DME) to methanol [J]. Appl Catal B, 2005, 61(3/4): 281-287.

    11. [11]

      [11] FAUNGNAWAKIJ K, TANAKA Y, SHIMODA N. Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production [J]. Appl Catal A, 2006, 304(1): 40-48.

    12. [12]

      [12] 冯冬梅, 王金福, 王德峥. 二甲醚水蒸气重整制氢催化剂的研究[J]. 中国科技论文在线, 2007, 2(8): 567-571. (FENG Dong-mei, WANG Jin-fu, WANG De-zheng. Production of hydrogen from dimethyl ether over catalysts[J]. Sciencepaper Online, 2007, 2(8): 567-571.)

    13. [13]

      [13] FUKUNAGA T, RYUMON N, SHIMAZU S. The influence of metals and acidic oxide species on the steam reforming of dimethyl ether (DME)[J]. Appl Catal A, 2008, 348(2): 193-200.

    14. [14]

      [14] LEDESMA C, OZKAN U S, LIORCA J. Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytic monoliths [J]. Appl Catal B, 2011, 101(3/4): 690-697.

    15. [15]

      [15] WANG X, PAN X, LIN R, KOU S, ZOU W, MA J. Steam reforming of dimethyl ether over Cu-Ni/γ-Al2O3 bi-functional catalyst prepared by deposition-precipitation method[J]. Int J Hydrogen Energy, 2010, 35(9): 4060-4068.

    16. [16]

      [16] FENG D, ZUO Y, WANG D, WANG J. Steam reforming of dimethyl ether over coupled catalysts of CuO-ZnO-Al2O3-ZrO2 and solid-acid catalyst[J]. Chin J Chem Eng, 2009, 17(1): 64-71.

    17. [17]

      [17] FENG D, ZUO Y, WANG D, WANG J. steam reforming of dimethyl ether over coupled zsm-5 and cu-zn-based catalysts [J]. Chin J Catal, 2009, 30(3): 223-229.

    18. [18]

      [18] SHIMODA N, MUROYAMA H, MATSUI T, FAUNGNAWAKIJ K, KIKUCHI R, EGUCHI K. Dimethyl ether steam reforming under daily start-up and shut-down (DSS)-like operation over CuFe2O4 spinel and alumina composite catalysts [J]. Appl Catal A, 2011, 409: 91-98.

    19. [19]

      [19] KUDO S, MAKI T, MIURA K, MAE K. High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether[J]. Carbon, 2010, 48(4): 1186-1195.

    20. [20]

      [20] SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Generating hydrogen-rich fuel-cell feeds from dimethyl ether(DME) using Cu/Zn supported on various solid-acid substrates[J]. Appl Catal A, 2006, 309(2): 210-223.

    21. [21]

      [21] SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid-acid catalysts[J]. Appl Catal B, 2006, 65(3/4): 291-300.

    22. [22]

      [22] KAWABATA T, MATSUOKA H, SHISHIDO T, LI D, TIAN Y, SANO T, TAKEHIRA K. Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation[J]. Appl Catal A, 2006, 308: 82-90.

    23. [23]

      [23] 李吉刚, 孙杰, 张立功, 程玉龙, 邱新平, 陈立泉. 花状微球NiO/CeO2催化剂上乙醇水蒸气重整制氢研究[J]. 燃料化学学报, 2010, 38(3): 332-336. (LI Ji-gang, SUN Jie, ZHANG Li-gong, CHENG Yu-long, QIU Xin-ping, CHEN Li-quan. Hydrogen production by steam reforming of ethanol over flower like microspheres Ni/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2010, 38(3): 332-336.)

    24. [24]

      [24] MORPURGO S, LO JACONO M, PORTA P. Copper-zinc-cobalt-aluminum-chromium hydroxycarbonates and mixed oxides[J]. J Solid State Chem, 1996, 122(2): 324-332.

    25. [25]

      [25] TURCO M, BAGNASCO G, COSTANTINO U, MARMOTTINI F, MONTANARI T, RAMIS G, BUSCA G. Production of hydrogen from oxidative steam reforming of methanol: II Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts[J]. J Catal, 2004, 228(1): 56-65.

    26. [26]

      [26] MELIAN C I, GRANADOS M L, FIERRO J L G. Thermal decomposition of a hydrotalcite-containing Cu-Zn-Al precursor: Thermal methods combined with an in situ DRIFT study[J]. Phys Chem Chem Phys, 2002, 4(13): 3122-3127.

    27. [27]

      [27] KANNAN S, RIVES V, KNOZINGER H. High-temperature transformations of Cu-rich hydrotalcites[J]. J Solid State Chem, 2004, 177(1): 319-331.

    28. [28]

      [28] SHEN G-C, FUJITA S-I, MATSUMOTO S, TAKEZAWA N. Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity[J]. J Mol Catal A, 1997, 124(2/3): 123-136.

    29. [29]

      [29] FUJITANI T, NAKAMURA J. The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity[J]. Catal Lett, 1998, 56(2/3): 119-124.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    9. [9]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    18. [18]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

Metrics
  • PDF Downloads(0)
  • Abstract views(498)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return