Citation:
WANG Zeng-zhu, HUANG Shou-ying, SHEN Yong-li, WANG Sheng-ping, MA Xin-bin. In situ DRIFTS study on the oxidative carbonylation of methanol to dimethyl carbonate over Cuβ catalyst[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(10): 1212-1221.
-
The mechanism of oxidative carbonylation of methanol to dimethyl carbonate (DMC) over Cuβ catalyst was investigated by using in situ DRIFTS; the adsorption of single methanol, carbon monoxide and DMC as well as their mixtures on the Cuβ catalyst were considered. The results indicated that methoxide species are formed when methanol is adsorbed on the catalyst due to presence of CuO<em>x. Only one type of active sites that are located in the six-membered ring of β zeolite is found, over which adsorbed methanol can be oxidized to methoxide and water. DMC is adsorbed on the catalyst through the contact of the oxygen atom in carbonyl group with the active sites. There were two pathways for the oxidative carbonylation: by the mono-methoxide pathway, carbon monoxide can react with mono-methoxide species to form monomethyl carbonate (MMC) and MMC then reacts with methoxide to form DMC, or by the di-methoxide pathway, DMC is formed through inserting of carbon monoxide in the di-methoxide species; latter one is more favorable over the Cuβ catalyst.
-
Keywords:
- Cuβ,
- oxidative carbonylation,
- DMC,
- mechanism,
- in situ DRIFTS
-
-
-
[1]
[1] PACHECO M A, MARSHALL C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive[J]. Energy Fuels, 1997, 11(1): 2-29.
-
[2]
[2] KELLER N, REBMANN G, KELLER V. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis[J]. J Mol Catal A,2010, 317(1/2): 1-18.
-
[3]
[3] DELLEDONNE D, RIVETTI F, ROMANO U. Developments in the production and application of dimethylcarbonate[J]. Appl Catal A, 2001, 221(1/2): 241-251.
-
[4]
[4] 马新宾, 黄守莹, 王胜平, 张萍波. 氧化羰基化法合成有机碳酸酯的研究进展[J]. 石油化工,2010, 9(7): 697-705. (MA Xin-bin, HUANG Shou-ying, WANG Sheng-ping, ZHANG Ping-bo. Advance in synthesis of organic carbonate by oxidative carbonylation[J]. Petrochemical Technology, 2010, 39(7): 697-705.)
-
[5]
[5] 李其明,李芳. 碳酸二甲酯合成的研究进展[J]. 化学试剂,2011, 33(4): 321-324. (LI Qi-ming, LI Fang. Research progress on synthesis of dimethyl carbonate[J]. Chemical Reagent, 2011, 33(4): 321-324.)
-
[6]
[6] ANDERSON S. Kinetic studies of carbonylation of methanol to dimethyl carbonate over Cu+X zeolite catalyst[J]. J Catal, 2003, 217(2): 396-405.
-
[7]
[7] KING S T. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. J Catal, 1996, 161(2): 530-538.
-
[8]
[8] ZHANG Y, BELL A T. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y[J]. J Catal, 2008, 255(2): 153-161.
-
[9]
[9] ENGELDINGER J, DOMKE C, RICHTER M, BENTRUP U. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: An in situ spectroscopic and catalytic study[J]. Appl Catal A, 2010, 382(2): 303-311.
-
[10]
[10] ENGELDINGER J, RICHTER M, BENTRUP U. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: An operando SSITKA/DRIFTS/MS study[J]. Phys Chem Chem Phys, 2012, 14(7): 2183
-
[11]
[11] ZHANG Y, BRIGGS D N, de SMIT E, BELL A T. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. J Catal, 2007, 251(2): 443-452.
-
[12]
[12] ZHANG P, HUANG S, YANG Y, MENG Q, WANG S, MA X. Effect of SSIE structure of Cu-exchanged β and Y on the selectivity for synthesis of diethyl carbonate by oxidative carbonylation of ethanol: A comparative investigation[J]. Catal Today, 2010, 149(1/2): 202-206.
-
[13]
[13] ZHANG P, HUANG S, WANG S, MA X. Effect of extra-framework silicon on the catalytic activity of Cuβ zeolite catalyst for synthesis of diethyl carbonate by oxidative carbonylation of ethanol[J]. Chem Eng J, 2011, 172(1): 526-530.
-
[14]
[14] GRUVER V, PANOV A, FRIPIAT J J. Infrared study of CO chemisorbed on Brönsted and Lewis sites in dealuminated acid Y and ZSM-5 zeolites[J]. Langmuir, 1996, 2(10): 2505-2513.
-
[15]
[15] MINTOVA S, VALTCHEV V, ONFROY T, MARICHAL C, KNÖZINGER H, BEIN T. Variation of the Si/Al ratio in nanosized zeolite Beta crystals[J]. Microporous Mesoporous Mater, 2006, 90(1/3): 237-245.
-
[16]
[16] DAVYDOV A A, BUDNEVA A A. IR spectra of CO and NO adsorbed on CuO[J]. React Kinet Catal Lett, 1984, 25(1/2): 121-124.
-
[17]
[17] BUSCA G. FT-IR study of the surface of copper oxide[J]. J Mol Catal, 1987, 43(2): 225-236.
-
[18]
[18] NEWSAM J M, TREACY M M J, KOETSIER W T, de GRUYTER C B. Structural characterization of zeolite beta[J]. Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences, 1988, 420(1859): 375-405.
-
[19]
[19] LI P, XIANG Y, GRASSIAN V H, LARSEN S C. CO adsorption as a probe of acid sites and the electric field in alkaline earth exchanged zeolite beta using FT-IR and ab Initio quantum calculations[J]. J Phys Chem B, 1999, 103(24): 5058-5062.
-
[20]
[20] BEUTEL T. Spectroscopic and kinetic study of the alkylation of phenol with dimethyl carbonate over NaX zeolite[J]. J Chem Soc Faraday Trans, 1998, 94(7): 985-993.
-
[21]
[21] KUKULSKA-ZAJAC E, DATKA J. Transformations of formaldehyde molecules in Cu-ZSM-5 zeolites[J]. J Phys Chem C, 2007, 111(8): 3471-3475.
-
[22]
[22] 余运波, 贺泓. Ag/Al2O3选择性催化丙烯还原氮氧化物表面反应机理的原位红外光谱研究[J]. 催化学报, 2003, 24(5): 385-390. (YU Yun-bo, HE Hong. Mechanistic study of lean NO reduction with propene over Ag/Al2O3 by in situ DRIFTS[J]. Chinese Journal of Catalysis, 2003, 24(5): 385-390.)
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[3]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[4]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[5]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[6]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[7]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[8]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[9]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[10]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[11]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[12]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[13]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[15]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[16]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[17]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[18]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[19]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[20]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(662)
- HTML views(68)