Citation: WANG Zeng-zhu, HUANG Shou-ying, SHEN Yong-li, WANG Sheng-ping, MA Xin-bin. In situ DRIFTS study on the oxidative carbonylation of methanol to dimethyl carbonate over Cuβ catalyst[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1212-1221. shu

In situ DRIFTS study on the oxidative carbonylation of methanol to dimethyl carbonate over Cuβ catalyst

  • Corresponding author: WANG Sheng-ping, 
  • Received Date: 27 March 2012
    Available Online: 25 May 2012

    Fund Project: 国家自然科学基金(20876112,20936003) (20876112,20936003) 高等学校博士学科点专项科研基金(20090032110021) (20090032110021) 高等学校学科创新引智计划(B06006)。 (B06006)

  • The mechanism of oxidative carbonylation of methanol to dimethyl carbonate (DMC) over Cuβ catalyst was investigated by using in situ DRIFTS; the adsorption of single methanol, carbon monoxide and DMC as well as their mixtures on the Cuβ catalyst were considered. The results indicated that methoxide species are formed when methanol is adsorbed on the catalyst due to presence of CuO<em>x. Only one type of active sites that are located in the six-membered ring of β zeolite is found, over which adsorbed methanol can be oxidized to methoxide and water. DMC is adsorbed on the catalyst through the contact of the oxygen atom in carbonyl group with the active sites. There were two pathways for the oxidative carbonylation: by the mono-methoxide pathway, carbon monoxide can react with mono-methoxide species to form monomethyl carbonate (MMC) and MMC then reacts with methoxide to form DMC, or by the di-methoxide pathway, DMC is formed through inserting of carbon monoxide in the di-methoxide species; latter one is more favorable over the Cuβ catalyst.
  • 加载中
    1. [1]

      [1] PACHECO M A, MARSHALL C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive[J]. Energy Fuels, 1997, 11(1): 2-29.

    2. [2]

      [2] KELLER N, REBMANN G, KELLER V. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis[J]. J Mol Catal A,2010, 317(1/2): 1-18.

    3. [3]

      [3] DELLEDONNE D, RIVETTI F, ROMANO U. Developments in the production and application of dimethylcarbonate[J]. Appl Catal A, 2001, 221(1/2): 241-251.

    4. [4]

      [4] 马新宾, 黄守莹, 王胜平, 张萍波. 氧化羰基化法合成有机碳酸酯的研究进展[J]. 石油化工,2010, 9(7): 697-705. (MA Xin-bin, HUANG Shou-ying, WANG Sheng-ping, ZHANG Ping-bo. Advance in synthesis of organic carbonate by oxidative carbonylation[J]. Petrochemical Technology, 2010, 39(7): 697-705.)

    5. [5]

      [5] 李其明,李芳. 碳酸二甲酯合成的研究进展[J]. 化学试剂,2011, 33(4): 321-324. (LI Qi-ming, LI Fang. Research progress on synthesis of dimethyl carbonate[J]. Chemical Reagent, 2011, 33(4): 321-324.)

    6. [6]

      [6] ANDERSON S. Kinetic studies of carbonylation of methanol to dimethyl carbonate over Cu+X zeolite catalyst[J]. J Catal, 2003, 217(2): 396-405.

    7. [7]

      [7] KING S T. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. J Catal, 1996, 161(2): 530-538.

    8. [8]

      [8] ZHANG Y, BELL A T. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y[J]. J Catal, 2008, 255(2): 153-161.

    9. [9]

      [9] ENGELDINGER J, DOMKE C, RICHTER M, BENTRUP U. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: An in situ spectroscopic and catalytic study[J]. Appl Catal A, 2010, 382(2): 303-311.

    10. [10]

      [10] ENGELDINGER J, RICHTER M, BENTRUP U. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: An operando SSITKA/DRIFTS/MS study[J]. Phys Chem Chem Phys, 2012, 14(7): 2183

    11. [11]

      [11] ZHANG Y, BRIGGS D N, de SMIT E, BELL A T. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. J Catal, 2007, 251(2): 443-452.

    12. [12]

      [12] ZHANG P, HUANG S, YANG Y, MENG Q, WANG S, MA X. Effect of SSIE structure of Cu-exchanged β and Y on the selectivity for synthesis of diethyl carbonate by oxidative carbonylation of ethanol: A comparative investigation[J]. Catal Today, 2010, 149(1/2): 202-206.

    13. [13]

      [13] ZHANG P, HUANG S, WANG S, MA X. Effect of extra-framework silicon on the catalytic activity of Cuβ zeolite catalyst for synthesis of diethyl carbonate by oxidative carbonylation of ethanol[J]. Chem Eng J, 2011, 172(1): 526-530.

    14. [14]

      [14] GRUVER V, PANOV A, FRIPIAT J J. Infrared study of CO chemisorbed on Brönsted and Lewis sites in dealuminated acid Y and ZSM-5 zeolites[J]. Langmuir, 1996, 2(10): 2505-2513.

    15. [15]

      [15] MINTOVA S, VALTCHEV V, ONFROY T, MARICHAL C, KNÖZINGER H, BEIN T. Variation of the Si/Al ratio in nanosized zeolite Beta crystals[J]. Microporous Mesoporous Mater, 2006, 90(1/3): 237-245.

    16. [16]

      [16] DAVYDOV A A, BUDNEVA A A. IR spectra of CO and NO adsorbed on CuO[J]. React Kinet Catal Lett, 1984, 25(1/2): 121-124.

    17. [17]

      [17] BUSCA G. FT-IR study of the surface of copper oxide[J]. J Mol Catal, 1987, 43(2): 225-236.

    18. [18]

      [18] NEWSAM J M, TREACY M M J, KOETSIER W T, de GRUYTER C B. Structural characterization of zeolite beta[J]. Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences, 1988, 420(1859): 375-405.

    19. [19]

      [19] LI P, XIANG Y, GRASSIAN V H, LARSEN S C. CO adsorption as a probe of acid sites and the electric field in alkaline earth exchanged zeolite beta using FT-IR and ab Initio quantum calculations[J]. J Phys Chem B, 1999, 103(24): 5058-5062.

    20. [20]

      [20] BEUTEL T. Spectroscopic and kinetic study of the alkylation of phenol with dimethyl carbonate over NaX zeolite[J]. J Chem Soc Faraday Trans, 1998, 94(7): 985-993.

    21. [21]

      [21] KUKULSKA-ZAJAC E, DATKA J. Transformations of formaldehyde molecules in Cu-ZSM-5 zeolites[J]. J Phys Chem C, 2007, 111(8): 3471-3475.

    22. [22]

      [22] 余运波, 贺泓. Ag/Al2O3选择性催化丙烯还原氮氧化物表面反应机理的原位红外光谱研究[J]. 催化学报, 2003, 24(5): 385-390. (YU Yun-bo, HE Hong. Mechanistic study of lean NO reduction with propene over Ag/Al2O3 by in situ DRIFTS[J]. Chinese Journal of Catalysis, 2003, 24(5): 385-390.)

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    7. [7]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    8. [8]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    9. [9]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    19. [19]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    20. [20]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(686)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return