Citation: WANG Qi, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, GUO Kai-li. Hydrogen donor visbreaking of Venezuelan atmospheric residue[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1200-1205. shu

Hydrogen donor visbreaking of Venezuelan atmospheric residue

  • Corresponding author: WANG Zong-xian, 
  • Received Date: 22 February 2012
    Available Online: 11 May 2012

    Fund Project: 中国石油天然气股份有限公司委内瑞拉超重油减黏基础研究(供氢热裂化)项目(W2008E-1502/2) (供氢热裂化)项目(W2008E-1502/2) 中央高校基本科研业务费专项资金资助(12CX06041A)。 (12CX06041A)

  • Visbreaking and hydrogen donor visbreaking of Venezuelan atmospheric residue were evaluated in an autoclave. The results show that hydrogen donor employ in visbreaking process is able to inhibit gas production, coke formation and asphaltene formation of residua in the thermal conversion process. To be specific, gas and coke yield in hydrogen donor visbreaking are less than that in visbreaking by 0.5%~1.2% and 0.02%~0.98% respectively, and asphaltene content of its residual oils is less than that of visbreaking by 0.6%~1.3%. With the reaction time increasing from 5 to 20 min at 425℃, the total and net viscosity reduction rate of hydrogen donor visbreaking process varies in 46.1%~54.8% and 10.2%~33.0%, respectively. The optimum reaction condition for hydrogen donor visbreaking process is obtained at 425℃ for 5 min. Under this condition, the properties of hydrogen donor visbroken oil are as follows: the spot test rates NO. 1 according to reference spot description in ASTM D4740, the kinematic viscosity measured at 50℃ is 185.5 mm2/s and the net viscosity reduction rate is 26.4%, which meet the basic requirements of transportation.
  • 加载中
    1. [1]

      [1] BESSON C, AGENCY I E. Resources to reserves: Oil & gas technologies for the energy markets of the future[M]. France: International Energy Agency, 2005.

    2. [2]

      [2] YAGHI B M, AL-BEMANI A. Heavy crude oil viscosity reduction for pipeline transportation[J]. Energy Sources, 2002, 24(2): 93-102.

    3. [3]

      [3] SANIERE A, HENAUT I, ARGILLIER J F. Pipeline transportation of heavy oils, a strategic, economic and technological challenge [J]. Oil Gas Sci Technol-Rev IFP, 2004, 59(5): 455-466.

    4. [4]

      [4] LANGEVIN D, POTEAU S, HENAUT I, ARGILLIER J F. Crude oil emulsion properties and their application to heavy oil transportation [J]. Oil Gas Sci Technol-Rev IFP, 2004, 59(5): 511-521.

    5. [5]

      [5] Van AKEN G A, ZOET F D. Coalescence in highly concentrated coarse emulsions[J]. Langmuir, 2000, 16(18): 7131-7138.

    6. [6]

      [6] SAVAYA Z F, AL-SOUFI H H, AL-AZAWI I. Stability of fuel oils produced by visbreaking of vacuum residue[J]. Fuel, 1989, 68(8): 1064-1066.

    7. [7]

      [7] ROGEL E. Theoretical approach to the stability of visbroken residues[J]. Energy Fuels, 1998, 12(5): 875-880.

    8. [8]

      [8] CARRILL J A, CORREDOR L M, VALERO M L. Visbreaking of the heavy crude oils: Castilla, Rubiales and Nare-Jazmin[J]. Prepr Pap Am Chem Soc, Div Fuel Chem, 2004, 49(2): 554-556.

    9. [9]

      [9] Del BIANCO A, PANARITI N, PRANDINI B. Thermal cracking of petroleum residues: 2 Hydrogen-donor solvent addition[J]. Fuel, 1993, 72(1): 81-85.

    10. [10]

      [10] 邓文安, 刘东, 周家顺. 加供氢剂的减压渣油减黏裂化工艺的开发[J]. 炼油技术与工程, 2007, 36(12): 7-10. (DENG Wen-an, LIU Dong, ZHOU Jia-shun. Development of vacuum residue visbreaking process with hydrogen donors[J]. Petroleum Refinery Engineering, 2007, 36(12): 7-10.)

    11. [11]

      [11] VASILAKOS N P, AUSTGEN D M. Hydrogen-donor solvents in biomass liquefaction[J]. Ind Eng Chem Process Des Dev, 1985, 24(2): 304-311.

    12. [12]

      [12] 王治卿, 王宗贤. 减压渣油供氢剂减黏裂化研究[J]. 燃料化学学报, 2007, 34(6): 745-748. (WANG Zhi-qing, WANG Zong-xian. Roles of hydrogen donor in visbreaking of vacuum residue[J]. Journal of Fuel Chemistry and Technology, 2007, 34(6): 745-748.)

    13. [13]

      [13] LANGER A W, STEWART J, THOMPSON C E. Hydrogen donor diluent visbreaking of residua[J]. Ind Eng Chem Process Des Dev, 1962, 1(4): 309-312.

    14. [14]

      [14] 刘东, 邓文安. 辽河减压渣油供氢减黏裂化反应性能研究[J]. 石油大学学报(自然科学版), 2002, 26(2): 86-87. (LIU-Dong, DENG Wen-an. Study on visbreaking reaction of Liaohe vacuum residue with hydrogen donor[J]. Journal of the University of Petroleum(Edition of Natural Science), 2002, 26(2): 86-87.)

    15. [15]

      [15] 郭爱军, 王宗贤, 张会军. 减压渣油掺炼工业供氢剂缓和热转化的基础研究[J]. 燃料化学学报, 2008, 35(6): 667-672. (GUO Ai-jun, WANG Zong-xian, Zhang Hui-jun. Fundamental study on mild thermal cracking of vacuum residue with industrial hydrogen donors [J]. Journal of Fuel Chemistry and Technology, 2008, 35(6): 667-672.)

    16. [16]

      [16] 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009. (XU Chun-ming, YANG Chao-he. Petroleum refining engineering [M]. 4th ed. Beijing: Petroleum Industry Press, 2009.)

    17. [17]

      [17] 梁文杰. 石油化学[M]. 东营: 中国石油大学出版社, 2009. (LIANG Wen-jie. Petroleum chemistry[M]. Dongying: China University of Petroleum Press, 2009.)

    18. [18]

      [18] SH/T 0266-92(98), 石油沥青质含量测定法[S]. (SH/T 0266-92(98), Standard test method for petroleum asphaltene content[S].)

    19. [19]

      [19] ASTM D4740-04(2009), Standard test method for cleanliness and compatibility of residual fuels by spot test [S].

    20. [20]

      [20] 柴志杰. 重质塔河原油的减黏裂化工艺 [J]. 中外能源, 2006, 11(3): 50-53. (CHAI Zhi-jie. Shallow splitting unit product weight crude oil for Tahe[J]. Sino-Global Energy, 2006, 11(3): 50-53.)

    21. [21]

      [21] 迟春红, 张道光, 严易明. 浅析减黏裂化工艺应用与技术发展[J]. 石油化工设计, 2010, 27(2): 25-27. (CHI Chun-hong, ZHANG Dao-guang, YAN Yi-ming. Application and development of visbreaking technology[J]. Petrochemical Design, 2010, 27(2): 25-27.)

    22. [22]

      [22] 亓玉台, 谢传欣. 减黏裂化工艺技术及其进展[J]. 炼油设计, 2000, 30(10): 1-6. (QI Yu-tai, XIE Chuan-xin. Progress in visbreaking technology[J]. Petroleum Refinery Engineering, 2000, 30(10): 1-6.)

    23. [23]

      [23] ARGILLIER J F, BARRE L, BRUCY F.Influence of asphaltenes content and dilution on heavy oil rheology [C]//SPE International Thermal Operations and Heavy Oil Symposium. Venezuela: Society of Petroleum Engineers Inc, 2001: 1-8.

    24. [24]

      [24] 郭爱军, 王宗贤. 饱和烃促进渣油热反应初期生焦的考察[J]. 燃料化学学报, 2001, 29(5): 408-412. (GUO Ai-jun, WANG Zong-xian. Promoting effect of saturate hydrocarbons in initial coke formation from petroleum residua under thermal cracking [J]. Journal of Fuel Chemistry and Technology, 2001, 29(5): 408-412.)

    25. [25]

      [25] 李生华, 刘晨光. 渣油热反应中第二液相的形成机制[J]. 燃料化学学报, 1998, 26(5): 423-430. (LI Sheng-hua, LIU Chen-guang. Formation mechanisms of second liquid phases in thermal reaction systems of vacuum residua [J]. Journal of Fuel Chemistry and Technology, 1998, 26(5): 423-430.)

    26. [26]

      [26] 李生华, 刘晨光. 渣油热反应体系中第二液相与焦的关系 [J]. 燃料化学学报, 1998, 26(1): 1-6. (LI Sheng-hua, LIU Chen-guang. Relations between second liquid phases and coke in thermal reaction systems of vacuum residua[J]. Journal of Fuel Chemistry and Technology, 1998, 26(1): 1-6.)

  • 加载中
    1. [1]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    2. [2]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    6. [6]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    7. [7]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    10. [10]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

Metrics
  • PDF Downloads(0)
  • Abstract views(1264)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return