Citation:
JIA Jian-bo, LI Feng-hai, ZENG Fan-gui, Guo Hong-yu. A DFT study on the mechanism of methyl indan formation in tetralin pyrolysis[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(10): 1188-1193.
-
The mechanism of methyl indan formation during tetralin pyrolysis was investigated by using the density functional theory (DFT). The results showed that 1-methyl indan is the main conformation of methyl indan products from tetralin pyrolysis. As the main route of 1-methyl indan formation during tetralin pyrolysis, β tetralin radical was first formed through H abstraction by radical species from tetralin, which then endures a ring contraction reaction to form 1-methyl indan. High temperature can promote the formation of 1-methyl indan, but has little effect on the formation routes of 1-methyl indan.
-
Keywords:
- tetralin,
- methyl indan,
- pyrolysis mechanism,
- density function theory
-
-
-
[1]
[1] 张晓静. 煤炭直接液化溶剂的研究[J]. 洁净煤技术, 2011, 17(4): 26-29. (ZHANG Xiao-jing. Study on solvents for direct coal liquefaction[J]. Clean Coal Technology, 2011, 17(4): 26-29.)
-
[2]
[2] 王绍清, 唐跃刚, Harold H Schobert, 郭琴, 王凤娟. 富含树皮体和半丝质体媒的液化反应性和13C-核磁共振分析的研究[J]. 燃料化学学报. 2010, 38(2): 129-133. (WANG Shao-qing, TANG Yue-gang, SCHOBERT H H, GUO Qin, WANG Feng-juan. Liquefaction reactivity and 13C-NMR of coals rich in barkinite and semi-fusinite[J]. Journal of Fuel Chemistry and Technology, 2010, 38(2): 129-133.)
-
[3]
[3] 徐蓉, 王国龙, 鲁锡兰, 李洋洋, 张德祥. 神华煤液化残渣的加氢反应动力学[J]. 化工学报, 2009, 60(11): 2749-2754. (XU Rong, WANG Guo-long, LU Xi-lan, LI Yang-yang, ZHANG De-xiang.Hydrogenation kinetics of Shenhua coal liquefaction residue [J].Journal of Chemical Industry and Engineering(China), 2009, 60(11): 2749-2754.)
-
[4]
[4] LI X, HU S X, JIN L J, HU H Q.Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction[J].Energy Fuels, 2008, 22(2): 1126-1129.
-
[5]
[5] HOOPER J R, HENDRIK A J, BATTAERD J, EVANS D G.Thermal dissociation of tetralin between 300 and 450℃[J].Fuel, 1979, 58(2): 132-138.
-
[6]
[6] CURRAN G.P, STRUCK R T, GORIN E.Mechanism of hydrogen-transfer process to coal and coal extract[J].Ind Eng Chem Process Des Dev, 1967, 6(2): 166-173.
-
[7]
[7] BOUNACEUR R, SCACCHI G, MARQUAIRE P M, DOMIN F.Mechanistic modeling of the thermal cracking of tetralin[J].Ind Eng Chem Res, 2000, 39(11): 4152-4165.
-
[8]
[8] POUTSMA M.L.Progress toward the mechanistic description and simulation of the pyrolysis of tetralin[J]Energy Fuels, 2002, 16(4): 964-996.
-
[9]
[9] POUTSMA M L.Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal[J].Energy Fuels,1990, 4(2): 113-131.
-
[10]
[10] YEN Y K, FURLANI D E, WELLER S W.Batch autoclave studies of catalytic hydrodesulfurization of coal[J].Ind Eng Chem Prod Dev, 1976, 15(1): 24-28.
-
[11]
[11] BENJAMIN B M, HAGAMAN E W, RAAEN V F, COLLINS C J.Pyrolysis of tetralin[J].Fuel, 1979, 58(5): 386-390.
-
[12]
[12] PENNINGER J M L.New aspects of the mechanism for the thermal hydrocracking of indane and tetralin[J].Int J Chem Kinet, 1982, 14(7): 761-780.
-
[13]
[13] 杨晓林, 杨惠星, 韩德刚.四氢萘(C10H12)热解反应动力学研究[J].物理化学学报, 1985, 1(3): 249-257. (YANG Xiao-lin, YANG Hui-xing, HAN De-gang.Kinetics and mechanism of thermolysis of tetralin[J].Acta Physico-Chimica Sinica, 1985, 1(3): 249-257.)
-
[14]
[14] 杨晓林, 应立明, 覃志伟.四氢萘热解反应机理研究[J].化学学报, 1990, 48(5): 441-446. (YANG Xiao-lin, YING Li-ming, TAN Zhi-wei.The study of mechanism for the thermolysis of tetralin[J].Acta Chimica Sinica, 1990, 48(5): 441-446.)
-
[15]
[15] 杨晓林, 杨惠星, 韩德刚.四氢萘热解中间产物及其反应机理的进一步研究[J].物理化学学报, 1985, 1(6): 571-574. (YANG Xiao-lin, YANG Hui-xing, HAN De-gang.The study of the intermediates reactions and the reaction mechanism in the thermolysis of tetraline [J].Acta Physico-Chimica Sinica, 1985, 1(6): 571-574.)
-
[16]
[16] 贾建波, 曾凡桂, 李美芬, 谢克昌.煤中芳核侧链模型化合物丁基蒽的初次热解[J].化工学报, 2009, 60(12): 3082-3088. (JIA Jian-bo, ZENG Fan-gui, LI Mei-fen, XIE Ke-chang.Initial pyrolysis mechanism of aliphatic group on aromatic cluster in coal structure by using butyl anthracene as model compound[J].Journal of Chemical Industry and Engineering(China), 2009, 60(12): 3082-3088.)
-
[17]
[17] 傅献彩, 沈文霞, 姚天扬. 物理化学[M].北京: 高等教育出版社, 1993: 806-811. (FU Xian-cai, SHEN Wen-xia, YAO Tian-yang.Physical chemistry [M].Beijing: Higher Education Press, 1993: 806-811.)
-
[1]
-
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[4]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[7]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[8]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[9]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[10]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[11]
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[14]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[15]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[16]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[17]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[18]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[19]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[20]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1031)
- HTML views(169)