Citation: JIA Jian-bo, LI Feng-hai, ZENG Fan-gui, Guo Hong-yu. A DFT study on the mechanism of methyl indan formation in tetralin pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1188-1193. shu

A DFT study on the mechanism of methyl indan formation in tetralin pyrolysis

  • Corresponding author: ZENG Fan-gui, 
  • Received Date: 28 March 2012
    Available Online: 20 May 2012

    Fund Project: 国家自然科学基金(41072116, 40772097, 40572094, 90410018) (41072116, 40772097, 40572094, 90410018) 国家自然科学青年基金(41102092,41002047) (41102092,41002047) 高等学校博士学科点专项科研基金(20091402110002) (20091402110002)

  • The mechanism of methyl indan formation during tetralin pyrolysis was investigated by using the density functional theory (DFT). The results showed that 1-methyl indan is the main conformation of methyl indan products from tetralin pyrolysis. As the main route of 1-methyl indan formation during tetralin pyrolysis, β tetralin radical was first formed through H abstraction by radical species from tetralin, which then endures a ring contraction reaction to form 1-methyl indan. High temperature can promote the formation of 1-methyl indan, but has little effect on the formation routes of 1-methyl indan.
  • 加载中
    1. [1]

      [1] 张晓静. 煤炭直接液化溶剂的研究[J]. 洁净煤技术, 2011, 17(4): 26-29. (ZHANG Xiao-jing. Study on solvents for direct coal liquefaction[J]. Clean Coal Technology, 2011, 17(4): 26-29.)

    2. [2]

      [2] 王绍清, 唐跃刚, Harold H Schobert, 郭琴, 王凤娟. 富含树皮体和半丝质体媒的液化反应性和13C-核磁共振分析的研究[J]. 燃料化学学报. 2010, 38(2): 129-133. (WANG Shao-qing, TANG Yue-gang, SCHOBERT H H, GUO Qin, WANG Feng-juan. Liquefaction reactivity and 13C-NMR of coals rich in barkinite and semi-fusinite[J]. Journal of Fuel Chemistry and Technology, 2010, 38(2): 129-133.)

    3. [3]

      [3] 徐蓉, 王国龙, 鲁锡兰, 李洋洋, 张德祥. 神华煤液化残渣的加氢反应动力学[J]. 化工学报, 2009, 60(11): 2749-2754. (XU Rong, WANG Guo-long, LU Xi-lan, LI Yang-yang, ZHANG De-xiang.Hydrogenation kinetics of Shenhua coal liquefaction residue [J].Journal of Chemical Industry and Engineering(China), 2009, 60(11): 2749-2754.)

    4. [4]

      [4] LI X, HU S X, JIN L J, HU H Q.Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction[J].Energy Fuels, 2008, 22(2): 1126-1129.

    5. [5]

      [5] HOOPER J R, HENDRIK A J, BATTAERD J, EVANS D G.Thermal dissociation of tetralin between 300 and 450℃[J].Fuel, 1979, 58(2): 132-138.

    6. [6]

      [6] CURRAN G.P, STRUCK R T, GORIN E.Mechanism of hydrogen-transfer process to coal and coal extract[J].Ind Eng Chem Process Des Dev, 1967, 6(2): 166-173.

    7. [7]

      [7] BOUNACEUR R, SCACCHI G, MARQUAIRE P M, DOMIN F.Mechanistic modeling of the thermal cracking of tetralin[J].Ind Eng Chem Res, 2000, 39(11): 4152-4165.

    8. [8]

      [8] POUTSMA M.L.Progress toward the mechanistic description and simulation of the pyrolysis of tetralin[J]Energy Fuels, 2002, 16(4): 964-996.

    9. [9]

      [9] POUTSMA M L.Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal[J].Energy Fuels,1990, 4(2): 113-131.

    10. [10]

      [10] YEN Y K, FURLANI D E, WELLER S W.Batch autoclave studies of catalytic hydrodesulfurization of coal[J].Ind Eng Chem Prod Dev, 1976, 15(1): 24-28.

    11. [11]

      [11] BENJAMIN B M, HAGAMAN E W, RAAEN V F, COLLINS C J.Pyrolysis of tetralin[J].Fuel, 1979, 58(5): 386-390.

    12. [12]

      [12] PENNINGER J M L.New aspects of the mechanism for the thermal hydrocracking of indane and tetralin[J].Int J Chem Kinet, 1982, 14(7): 761-780.

    13. [13]

      [13] 杨晓林, 杨惠星, 韩德刚.四氢萘(C10H12)热解反应动力学研究[J].物理化学学报, 1985, 1(3): 249-257. (YANG Xiao-lin, YANG Hui-xing, HAN De-gang.Kinetics and mechanism of thermolysis of tetralin[J].Acta Physico-Chimica Sinica, 1985, 1(3): 249-257.)

    14. [14]

      [14] 杨晓林, 应立明, 覃志伟.四氢萘热解反应机理研究[J].化学学报, 1990, 48(5): 441-446. (YANG Xiao-lin, YING Li-ming, TAN Zhi-wei.The study of mechanism for the thermolysis of tetralin[J].Acta Chimica Sinica, 1990, 48(5): 441-446.)

    15. [15]

      [15] 杨晓林, 杨惠星, 韩德刚.四氢萘热解中间产物及其反应机理的进一步研究[J].物理化学学报, 1985, 1(6): 571-574. (YANG Xiao-lin, YANG Hui-xing, HAN De-gang.The study of the intermediates reactions and the reaction mechanism in the thermolysis of tetraline [J].Acta Physico-Chimica Sinica, 1985, 1(6): 571-574.)

    16. [16]

      [16] 贾建波, 曾凡桂, 李美芬, 谢克昌.煤中芳核侧链模型化合物丁基蒽的初次热解[J].化工学报, 2009, 60(12): 3082-3088. (JIA Jian-bo, ZENG Fan-gui, LI Mei-fen, XIE Ke-chang.Initial pyrolysis mechanism of aliphatic group on aromatic cluster in coal structure by using butyl anthracene as model compound[J].Journal of Chemical Industry and Engineering(China), 2009, 60(12): 3082-3088.)

    17. [17]

      [17] 傅献彩, 沈文霞, 姚天扬. 物理化学[M].北京: 高等教育出版社, 1993: 806-811. (FU Xian-cai, SHEN Wen-xia, YAO Tian-yang.Physical chemistry [M].Beijing: Higher Education Press, 1993: 806-811.)

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    11. [11]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    18. [18]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    19. [19]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(0)
  • Abstract views(1030)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return