Citation:
ZHANG Si-wen, SHEN Lai-hong, XIAO Jun, GU Hai-ming, SONG Tao. Catalytic combustion of coal using alkali and transition metals loaded on iron ore oxygen carrier[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(10): 1179-1187.
-
The coal gasification rate is the limiting step during the chemical looping combustion (CLC) process. The effects of Na- and Ni-based additives loaded on the iron ore oxygen carriers on the chemical looping combustion (CLC) of coal were investigated in a fluidized bed. The influences of temperature, loading and cycle number on the performance of compound oxygen carriers were evaluated. The catalytic effect of Na is found to be higher than that of Ni at 920℃. The rate of reaction is enhanced with increasing the loading of Na and Ni. The peaks of all the exit gas concentration appear earlier and in the later stage the decay rate of that becomes larger. The concentration of CO in the exit gas is obviously decreased, whereas that of CO2 and H2 is increased. With a 6% loading of Ni, the catalytic effect of Ni on the carbon conversion is remarkable at 960℃, in which the carbon conversion is up to 92.7% that is about 15.5% higher than that using the iron ore. However, the effect of Ni on the carbon conversion is not obvious at 800~920℃. Compared with Ni, Na shows an obvious catalysis on the coal combustion of CLC in the whole experimental temperature region (800~960℃). The scanning electron microscope (SEM) and the energy-dispersive X-ray (EDX) analysis show that there is a severe loss of Na on the surface of used Na-based iron ore, but a less loss of Ni on the surface of used Ni-based iron ore.
-
Keywords:
- chemical-looping combustion,
- catalytic gasification,
- iron ore,
- natrium,
- nickel
-
-
-
[1]
[1] RICHTER H, KNOCHE K. Reversibility of combustion processes [C]//Efficiency and costing-second law analysis of processes (ACS Symposium Series). Washington DC:American Chemical Society, 1983: 71-85.
-
[2]
[2] MATTISSON T, LYNGFELT A, CHO P. The use of iron oxide as an oxygen carrier in chemical looping combustion of methane with inherent separation of CO2 [J]. Fuel, 2001, 80(13): 1953-1962.
-
[3]
[3] LEION H, LYNGFELT A, JOHANSSON M, JERNDAL E, MATTISSON T. The use of ilmenite as an oxygen carrier in chemical-looping combustion [J]. Chem Eng Res Des, 2008, 86(9): 1017-1026.
-
[4]
[4] BERGUERAND N, LYNGFELT A. Design and operation of a 10 kWth chemical-looping combustor for solid fuels-testing with South African coal [J]. Fuel, 2008, 87(12): 2713-2726.
-
[5]
[5] 顾海明, 吴家桦, 郝建刚, 沈来宏, 肖军. 基于赤铁矿载氧体的串行流化床煤化学链燃烧试验 [J]. 中国电机工程学报, 2010, 30(17): 51-56. (GU Hai-ming, WU Jia-hua, HAO Jian-gang, SHEN Lai-hong, XIAO Jun. Experiments on chemical looping combustion of coal in interconnected fluidized bed using hematite as oxygen carrier [J]. Proceedings of the CSEE, 2010, 30(17): 51-56.)
-
[6]
[6] AZIS M M, JERNDAL E, LEION H, MATTISSON T, LYNGFELT A. On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC) [J]. Chem Eng Res Des, 2010, 88(11): 1505-1514.
-
[7]
[7] ADANEZ J, CUADRAT A, ABAD A, GAYN P, de DIEGO L F, GARCI A-LABIANO F. Ilmenite activation during consecutive redox cycles in chemical-looping combustion [J]. Energy Fuels, 2010, 24(2): 1402-1413.
-
[8]
[8] CUADRAT A, ABAD A, ADANEZ J, de DIEGO L F, GARCI A-LABIANO F, GAYN P. Behavior of ilmenite as oxygen carrier in chemical-looping combustion [J]. Fuel Process Technol, 2012, 94(1): 101-112.
-
[9]
[9] MOLDENHAUER P, RYDN M, LYNGFELT A. Testing of minerals and industrial by-products as oxygen carriers for chemical-looping combustion in a circulating fluidized-bed 300 W laboratory reactor [J]. Fuel, 2012, 93: 351-363.
-
[10]
[10] 王保文, 赵海波, 郑瑛, 柳朝晖, 郑楚光. 煤化学链燃烧技术的研究进展 [J]. 动力工程学报, 2011, 31(7): 544-550. (WANG Bao-wen, ZHAO Hai-bo, ZHENG Ying, LIU Zhao-hui, ZHENG Chu-guang. Research progress in chemical looping combustion of coal [J]. Journal of Chinese Society of Power Engineering, 2011, 31(7): 544-550.)
-
[11]
[11] 刘黎明, 赵海波, 郑楚光. 化学链燃烧方式中氧载体的研究进展 [J]. 煤炭转化, 2006, 29(3): 83-93. (LIU Li-ming, ZHAO Hai-bo, ZHENG Chu-guang. Advances on oxygen carriers of chemical-looping combustion [J]. Coal Conversion, 2006, 29(3): 83-93.)
-
[12]
[12] 孟磊, 周敏, 王芬. 煤催化气化催化剂研究进展 [J]. 煤气与热力, 2010, 30(4): 18-22. (MENG Min, ZHOU Min, WANG Fen. Progress of research on catalyst for catalytic gasification of coal [J]. Gas and Heat, 2010, 30(4): 18-22.)
-
[13]
[13] MEIJER R, KAPTEIJN F, A. MOULIJN J. Kinetics of the alkali-carbonate catalysed gasification of carbon: 3 H2O gasification [J]. Fuel, 1994, 73(5): 723-730.
-
[14]
[14] LANG R J. Anion effects in alkali-catalysed steam gasification [J]. Fuel, 1986, 65(10): 1324-1329.
-
[15]
[15] MCKEE D W. Mechanisms of the alkali metal catalysed gasification of carbon [J]. Fuel, 1983, 62(2): 170-175.
-
[16]
[16] WALKER P L Jr, MATSUMOTO S, HANZAWA T, MUIRA T, ISMAI L M K. Catalysis of gasification of coal-derived cokes and chars [J]. Fuel, 1983, 62(2): 140-149.
-
[17]
[17] CHANDRA SRIVASTAVA R, SINHA J, KUMAR SRIVASTAVA S, CHANDRA TRIPATHI S. Nickel catalysed steam gasification of chars obtained from coal-alkali reaction at 600℃ [J]. Fuel, 2003, 82(1): 93-96.
-
[18]
[18] ELLIG D L, LAI C K, MEAD D W, LONGWELL J P, PETERS W A. Pyrolysis of volatile aromatic hydrocarbons and n-heptane over calcium oxide and quartz [J]. Ind Eng Process Des Dev, 1985, 24(4): 1080-1087.
-
[19]
[19] WANG J, JIANG M, YAO Y, ZHANG Y, GAO J. Steam gasification of coal char catalysed by K2CO3 for enhanced production of hydrogen without formation of methane [J]. Fuel, 2009, 88(9): 1572-1579.
-
[20]
[20] 杨景标, 蔡宁生, 李振山. 几种金属催化褐煤焦水蒸气气化的试验研究 [J]. 中国电机工程学报, 2007, 27(26): 7-12. (YANG Jing-biao, CAI Ning-sheng, LI Zhen-shan. Experimental study on steam gasification of lignite char catalysed by several metals [J]. Proceedings of the CSEE, 2007, 27(26): 7-12.)
-
[21]
[21] MIURA K, AIMI M, NAITO T. Steam gasification of carbon: Effect of several metals on the rate of gasification and the rates of CO and CO2 formation [J]. Fuel, 1986, 65(3): 407-411.
-
[22]
[22] LI C-Z, SATHE C, KERSHAW J R, PANG Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal [J]. Fuel, 2000, 79(3/4): 427-438.
-
[23]
[23] 潘英刚, 严惠珍, 曹建功. 碱金属碳酸盐在煤气化中的催化作用(II) 在 C-H2O 反应中 Na2CO3 的催化活性 [J]. 燃料化学学报, 1981, 9(3): 259-265. (PAN Ying-gang, YAN Hui-zhen, CAO Jian-gong. Effects in carbonate of alkali metal -catalysed steam gasification [J]. Journal of Fuel Chemistry and Technology, 1981, 9(3): 259-265.)
-
[24]
[24] 徐振刚, 刘国海, 于涌年. 焦作无烟煤催化气化反应动力学研究 [J]. 煤炭学报, 1987, 12(1): 86-95. (XU Zhen-gang, LIU Guo-hai, YU Yong-nian. Kinetics of alkaline catalysed steam gasification using Jiaozuo anthracite [J]. Journal of China Coal Society, 1987, 12(1): 86-95.)
-
[25]
[25] 杨景标, 蔡宁生, 张彦文. 催化剂添加量对褐煤焦水蒸气气化反应性的影响 [J]. 燃料化学学报, 2008, 36(1): 15-22. (YANG Jing-biao, CAI Ning-sheng, ZHANG Yan-wen. Effect of catalyst loadings on the gasification reactivity of a lignite char with steam [J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 15-22.)
-
[26]
[26] LÓPEZ-PEINADO A, CARRASCO-MARÍN F, RIVERA-UTRILLA J, MORENO-CASTILLA C. Steam gasification of a lignite char catalysed by metals from chromium to zinc [J]. Fuel, 1992, 71(1): 105-108.
-
[27]
[27] OZAWA Y, TOCHIHARA Y. Catalytic decomposition of ammonia in simulated coal-derived gas over supported nickel catalysts [J]. Catal Today, 2011, 164(1): 528-532.
-
[28]
[28] 翟学良, 李纪标, 史永宏. Ni-海泡石催化剂的制备与微观形态 [J]. 电子显微学报, 1998, 17(5): 647-648. (ZHAI Xue-liang, LI Ji-biao, SHI Yong-hong. Preparation and morphology of Ni-sepiolite catalyst [J]. Journal of Chinese Electron Microscopy Society, 1998, 17(5): 647-648.)
-
[1]
-
-
-
[1]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[2]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[3]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[4]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[5]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[6]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[7]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[8]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[9]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[10]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[11]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[12]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[13]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[14]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[15]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[16]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[17]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[18]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[19]
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
-
[20]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(540)
- HTML views(34)