Citation: GAO Feng, MA Yong-jing. Study on the effect of Mg2+ and Na+ on the fusibility of coal ash with high ash fusion point[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(10): 1161-1166. shu

Study on the effect of Mg2+ and Na+ on the fusibility of coal ash with high ash fusion point

  • Corresponding author: GAO Feng, 
  • Received Date: 9 December 2011
    Available Online: 17 February 2012

    Fund Project: 煤转化国家重点实验室开放基金(09-102)。 (09-102)

  • Adjustment of coal ash fusibility of high fusion point coal has been attracted by attention of many researchers in coal gasification and combustion. The effect of Mg2+ and Na+ on the fusibility behavior of the high fusion temperature coal ash from Yangquan Guzhuang was studied in this paper, using the method of adding different amount of MgO and Na2CO3 (5%~25%) to the coal ash. The result shown that the ash fusion temperature monotonically decreases with increasing addition amount of MgO, while the ash fusion temperatures exhibit low valley and reach the minimum when the addition amount of Na2CO3 is 15%. Investigated by XRD, mullite and cristobalite are detected in the Yangquan Guzhuang coal ash, which results in the ash fusion temperature of the coal ash higher than 1 750℃. Additions reacting with silicate minerals can form more low-melting eutectic minerals, such as cordierite and nepheline, etc. Meanwhile, the additions of Mg2+ and Na+ cause non-bridged oxygen and oligomers increasing, then the ash fusion temperature reduce. Ternary phase diagram and SEM micrograph confirm that the local clustering of partial elements and reunited phenomenon of coal ash under high temperature condition result in the different effect of Mg2+ and Na+ on the coal ash fusibility behavior.
  • 加载中
    1. [1]

      [1] 贺根良, 门长贵. 气流床气化炉操作温度的探讨[J]. 煤化工, 2007, 35(4): 8-11. (HE Gen-liang, MEN Chang-gui. Discussion on the operational temperature for entrained flow gasifiers[J]. Coal Chemical Industry, 2007, 35(4): 8-11.)

    2. [2]

      [2] 乌晓江, 张忠孝, 朴桂林, 小林信介, 森滋勝, 板谷羲紀. 高灰熔点煤高温下煤焦CO2/水蒸气气化反应特性的实验研究[J]. 中国电机工程学报, 2007, 27(32): 24-28. (WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, KOBAYASHI N, MORI S, ITATYA Y. Experimental study on gasification reaction characteristics of Chinese high ash fusion temperature coal with CO2 and steam at elevated temperature[J]. Journal of Proceedings of the CSEE, 2007, 27(32): 24-28.)

    3. [3]

      [3] 王艳柳, 张晓慧. 煤灰熔融性对气化用煤的影响[J]. 煤质技术, 2009, (4): 55-58. (WANG Yan-liu, ZHANG Xiao-hui. Effect of ash fusibility on gasifying coal[J]. Journal of Coal Quality and Technology, 2009, (4): 55-58.)

    4. [4]

      [4] 李宝霞, 张济宇. 煤灰渣熔融特性的研究进展[J]. 现代化工, 2005, 25(5): 22-28. (LI Bao-xia, ZHANG Ji-yu. Research progress of coal ash fusibility[J]. Journal of Modern Chemical Industry, 2005, 25(5): 22-28.)

    5. [5]

      [5] HURST H J. Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes[J]. Energy Fuels, 1996, 10(6): 1215-1219.

    6. [6]

      [6] 范立明, 陈杰瑢, 田晓莉, 黄传卿, 杜晓玮. 石灰石添加量对黄陵煤灰熔融特性的影响[J]. 煤化工, 2007, 35(2): 31-63. (FAN Li-ming, CHEN Jie-rong, TIAN Xiao-li, HUANG Chuan-qing, DU Xiao-wei. Study of the optimum amount of limestone addition in preparation of coal water slurry[J]. Coal Chemical Industry, 2007, 35(2): 31-63.)

    7. [7]

      [7] 许志琴, 于戈文, 邓蜀平, 董众兵, 李永旺. 助熔剂对高灰熔点煤影响的实验研究[J]. 煤炭转化, 2005, 28(3): 22-25. (XU Zhi-qin, YU Ge-wen, DENG Shu-ping., DONG Zhong-bing, LI Yong-wang. Experimental studies on the effect of fusion agents on high ash-melting coals[J]. Coal Conversion, 2005, 28(3): 22-25.)

    8. [8]

      [8] 李继炳, 沈本贤, 赵基钢, 王基铭. 镁基助熔剂对刘桥二矿混煤灰熔融特性的影响[J]. 煤炭转化, 2009, 32(2): 37-40. (LI Ji-bing, SHEN Ben-xian, ZHAO Ji-gang, WANG Ji-ming. Effect of magnesium-based flux on the melting characteristics of coal ash from coal blends using the Liuqiao No.2 coal mine[J]. Coal Conversion, 2009, 32(2): 37-40.)

    9. [9]

      [9] QIU J-R, LI F, ZHENG Y, ZHENG C-G, ZHOU H-C. The influences of mineral behavior on blend coal ash fusion characteristics [J]. Fuel, 1999, 78(8): 963-969.

    10. [10]

      [10] LI Ji-bing, SHEN Ben-xian, LI Han-xun, ZHAO Ji-gang, WANG Ji-ming. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liuqiao No.2 coal mine in Wanbei[J]. J Fuel Chem Technol, 2009, 37(3): 262-265.

    11. [11]

      [11] 乌晓江, 张忠孝, 朴桂林, 森 滋勝, 板谷 羲纪, 陈龙. 配煤对降低高灰熔融性煤的三元相图分析[J]. 洁净煤技术, 2007, 13(3): 64-67. (WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, MORI S, ITATYA Y, CHEN Long. Analysis of coal ash fusion characteristics of high fusibnity coal blending with low's with ternary phase diagram[J]. Clean Coal Technology, 2007, 13(3): 64-67.)

    12. [12]

      [12] WU X, ZHANG Z, CHEN Y, ZHOU T, FAN J, PIAO G, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010, 91(11): 1591-1600.

    13. [13]

      [13] VASSILEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995, 45(1): 27-51.

    14. [14]

      [14] 高峰, 单晓伟. 煤灰在不同耐火砖表面的润湿性与侵蚀性研究[J]. 燃料化学学报, 2012, 40(7): 769-775. (GAO Feng, SHAN Xiao-wei. Wettability and erodibility of coal ash on the surface of different refractories[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 769-775.)

    15. [15]

      [15] Van DYK J C, BAXTER L L, van HEERDEN J H P,COETZER R L J. Chemical fractionation tests on South African coal sources to obtain species-specific information on ash fusion temperatures (AFT)[J]. Fuel, 2005, 84(14-15): 1768-1777.

    16. [16]

      [16] 王勤辉, 景妮洁, 骆仲泱, 李小敏, 揭涛. 灰成分影响煤灰烧结温度的实验研究[J]. 煤炭学报, 2010, 35(6): 1015-1020. (WANG Qin-hui, JING Ni-jie, LUO Zhong-yang, LI Xiao-min, JIE Tao. Experiments on the effect of chemical components of coal ash on the sintering temperature[J]. Journal of China Coal Society, 2010, 35(6): 1015-1020.)

    17. [17]

      [17] 廖敏, 郭庆华, 梁钦锋, 袁海平, 倪建军, 于广锁. 气化条件下煤灰高温物相变化及其对黏度的影响[J]. 中国电机工程学报, 2010, 30(17): 45-50. (LIAO Min, GUO Qing-hua, LIANG Qin-feng, YUAN Hai-ping, NI Jian-jun, YU Guang-suo. Phase transformation of coal ash at high temperature under gasification conditions and its influence on viscosity[J]. Journal of Proceedings of the CSEE, 2010, 30(17): 45-50.)

    18. [18]

      [18] LI W, LI M, LI W-F, LIU H. Study on the ash fusion temperatures of coal and sewage sludge mixtures[J]. Fuel, 2010, 89(7): 1566-1572.

    19. [19]

      [19] 谷小虎, 曹敏, 王兰甫, 田亚鹏. 煤灰对气化反应性的影响[J]. 煤化工, 2009, 37(2): 19-21. (GU Xiao-hu, CAO Min, WANG Lan-pu, TIAN Ya-peng. Effect of ash on gasification reactivity[J]. Coal Chemical Industry, 2009, 37(2): 19-21.)

    20. [20]

      [20] 唐黎华, 王福明, 朱学栋, 吴勇强, 朱子彬. 煤焦中矿物质行为与灰熔融温度的关系[J]. 华东理工大学学报, 2003, 29(3): 243-247. (TANG Li-hua, WANG Fu-ming, ZHU Xue-dong, WU Yong-qiang, ZHU Zi-bin. Relationship between mineral behavior in coke and ash melting temperature[J]. Journal of East China University of Science and Technology, 2003, 29(3): 243-247.)

  • 加载中
    1. [1]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    2. [2]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    13. [13]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    16. [16]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(0)
  • Abstract views(729)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return