Citation: Yi-Lin Wu, Yong-Sheng Yan, Jian-Ming Pan, Xiao-Hui Dai, Wei-Dong Shi, Min-Jia Meng. Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization[J]. Chinese Chemical Letters, ;2014, 25(2): 273-278. shu

Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization

  • Corresponding author: Yong-Sheng Yan, 
  • Received Date: 11 October 2013
    Available Online: 1 November 2013

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (Nos. 21077046, 21107037, 21176107, 21174057, 2100403, 21207051) (Nos. 21077046, 21107037, 21176107, 21174057, 2100403, 21207051) National key basic research development program (973 Program, No. 2012CBB21500) (973 Program, No. 2012CBB21500) Ph.D. Programs Foundation of Ministry of Education of China (No. 20123227120015) (No. 20123227120015)Natural Science Foundation of Jiangsu Province (Nos. BK2011461, SBK2011459, BK2011514). China Postdoctoral Science Foundation funded project (Nos. 2012M511220, 2013M530240). (Nos. BK2011461, SBK2011459, BK2011514)

  • A simple and effective method for surface molecularly imprinted composite membranes (MICMs) for artemisinin (Ars) based on regenerated cellulose membranes was first prepared through surfaceinitiated atom transfer radical polymerization (ATRP), and the as-prepared MICMs were then evaluated as adsorbents for selective recognition and separation of Ars molecules. Batch rebinding studies were conducted to determine the specific adsorption equilibrium, kinetics and selective permeation performance. The adsorption capacity of MICMs toward Ars by the Langmuir isotherm model was 2.008 mg g-1, which was nearly 5.0 times higher than non-molecularly imprinted composite membranes (NICMs). The kinetic property of MICMs was well-fitted by the pseudo-second-order rate equation. The selective permeation experiments were successfully investigated to prove the excellent selective permeation performance for Ars than the competitive analog (artemether).
  • 加载中
    1. [1]

      [1] A.L. Schilmiller, R.L. Last, E. Pichersky, Harnessing plant trichome biochemistry for the production of useful compounds, Plant J. 54 (2008) 702-711.

    2. [2]

      [2] A. Gautam, T. Ahmed, J. Paliwal, V. Batra, Pharmacokinetics and pharmacodynamics of endoperoxide antimalarials, Curr. Drug. Metab. 10 (2009) 289-306.

    3. [3]

      [3] J.B. Jiang, G.Q. Li, X.B. Guo, Y.C. Kong, K. Arnold, Antimalarial activity of mefloquine and qinghaosu, Lancet 2 (1982) 285-288.

    4. [4]

      [4] E.V. Piletska, K. Karim, M. Cutler, A.P. Sergey, Development of the protocol for purification of artemisinin based on combination of commercial and computationally designed adsorbents, J. Sep. Sci. 36 (2013) 400-406.

    5. [5]

      [5] M.N. Maier, W. Lindner, Chiral recognition applications of molecularly imprinted polymers: a critical review, Anal. Bioanal. Chem. 389 (2007) 377-397.

    6. [6]

      [6] G. Wulff, Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies, Angew. Chem. Int. Ed. 34 (1995) 1812-1832.

    7. [7]

      [7] P. Wang, X.F. Fu, J. Li, et al., Preparation of hydrophilic molecularly imprinted polymers for tetracycline antibiotics recognition, Chin. Chem. Lett. 22 (2011) 611-614.

    8. [8]

      [8] Y. Wang, T.X. Wei, Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers, Chin. Chem. Lett. 24 (2013) 813-816.

    9. [9]

      [9] S.A. Piletsky, T.L. Pansyuk, E.V. Piletskaya, I.A. Nichools, M. Ulbricht, Receptor and transport properties of imprinted polymer membranes - a review, J. Membr. Sci. 157 (1999) 263-278.

    10. [10]

      [10] M. Ypsjolawa, K. Murakoshi, T. Kogita, et al., Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups, Eur. Polym. J. 42 (2006) 2532-2539.

    11. [11]

      [11] M. Ulbricht, Membrane separations using molecularly imprinted polymers, J. Chromatogr. B 804 (2004) 113-125.

    12. [12]

      [12] R. Kiełczyński, M. Bryjak, Molecularly imprinted membranes for cinchona alkaloids separation, Sep. Purif. Technol. 41 (2005) 231-235.

    13. [13]

      [13] I. Koyuncu, O.A. Arikan, M.R. Wiesner, C. Rice, Removal of hormones and antibiotics by nanofiltration membranes, J. Membr. Sci. 309 (2008) 94-101.

    14. [14]

      [14] C.L. Winson, Y.L. Lay, A.G. Fane, Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: a review, Water Res. 44 (2010) 21-40.

    15. [15]

      [15] M.E. Avramescu, W.F.C. Sager, M.H.V. Mulder, M. Wessling, Preparation of ethylene vinylalcohol copolymer membranes suitable for ligand coupling in affinity separation, J. Membr. Sci. 210 (2002) 155-173.

    16. [16]

      [16] W. Albrecht, F. Santoso, K. Lutzow, et al., Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membranes with various morphologies, J. Membr. Sci. 292 (2007) 145-157.

    17. [17]

      [17] S.A. Saufi, C.J. Fee, Fractionation of beta-lactoglobulin from whey by mixed matrix membrane ion exchange chromatography, Biotechnol. Bioeng. 103 (2009) 138- 147.

    18. [18]

      [18] G. Yang, L. Zhang, Regenerated cellulose microporous membranes by mixing cellulose cuoxam with a water soluble polymer, J. Membr. Sci. 114 (1996) 149- 155.

    19. [19]

      [19] K. Matyjaszewski, J. Xia, Atom transfer radical polymerization, Chem. Rev. 101 (2001) 2921-2990.

    20. [20]

      [20] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.

    21. [21]

      [21] Y.S. Ho, G. McKay, The sorption of lead (Ⅱ) ions on peat, Water Res. 33 (1999) 578- 584.

    22. [22]

      [22] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.

  • 加载中
    1. [1]

      Ran ZhuPan ZhangYitong XuJiutong MaQiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259

    2. [2]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    3. [3]

      Xingjie LiChengjun YiWeifei HuHuishan ZhangJiale XiaYuanyuan LiJinping Liu . Emerging sulfide-polymer composite solid electrolyte membranes. Chinese Chemical Letters, 2025, 36(6): 110215-. doi: 10.1016/j.cclet.2024.110215

    4. [4]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    5. [5]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    6. [6]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    7. [7]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    8. [8]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    9. [9]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    10. [10]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    11. [11]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    12. [12]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    13. [13]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    14. [14]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    15. [15]

      Yuetong GaoTong MuXinyue HuYang PangChengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763

    16. [16]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    17. [17]

      Jinshu HuangZhuochun HuangTengyu LiuYu WenJili YuanSong YangHu Li . Modulating single-atom Co and oxygen vacancy coupled motif for selective photodegradation of glyphosate wastewater to circumvent toxicant residue. Chinese Chemical Letters, 2025, 36(5): 110179-. doi: 10.1016/j.cclet.2024.110179

    18. [18]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    19. [19]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    20. [20]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

Metrics
  • PDF Downloads(0)
  • Abstract views(873)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return