Citation: Shu-Qing Lv, Yong-Sheng Zhao. The effect of metal ions with different valences on the retardation of soil-bentonite barrier materials and its mechanism[J]. Chinese Chemical Letters, ;2013, 24(12): 1075-1079. shu

The effect of metal ions with different valences on the retardation of soil-bentonite barrier materials and its mechanism

  • Corresponding author: Shu-Qing Lv, 
  • Received Date: 5 June 2013
    Available Online: 12 July 2013

    Fund Project: This work was supported by Public Welfare Special Research of National Environmental Protection of China (No. 201309004). (No. 201309004)

  • In this paper, with K+, Ca2+ and Fe3+ as the objects of study, retardation of soil-bentonite (SB) barrier materials for metal ions with different valences is investigated, and the adsorption mechanism, migration patterns and permeation behavior are explored so as to provide a theoretical basis for their application. The results show that the adsorption process for metal ions with different valences by SB barriermaterials is fast, and the higher the valence, the greater the adsorption capacity. The fitting of the adsorption process conforms to pseudo-second-order adsorption kinetics and Langmuir-Freundlich adsorption equation, which explains that chemical adsorption is the dominating state and that the SB surface has certain heterogeneity. The permeability coefficient of K+, Ca2+ and Fe3+ in SB each has a maximum and the higher the valence, the sooner the maximum appears. Also the higher the valence, the more obvious the effect on SB retardation performance; and the sooner the ion breaks through the barrier wall completely, that is, the wall's retardation performance for higher valent ions may decline. 2013 Shu-Qing Lv. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
  • 加载中
    1. [1]

      [1] Y.S. Zhao, Groundwater pollution control and remediation, Jilin. Univ., Earth Sci. Ed. 37 (2007) 303-310.

    2. [2]

      [2] U.S. EPA 542-R-98-005 (1998). http://www.clu-in.org/s.focus/c/pub/i/88/.

    3. [3]

      [3] D.J. D'Appolonia, Soil-bentonite slurry trench cutoffs, Geotech. Eng. Div. 106 (1980) 399-417.

    4. [4]

      [4] T. Yu, W.S. Wu, Q.H. Fan, Sorption of Am(Ⅲ) on Na-bentonite: effect of pH, ionic strength, temperature and humic acid, Chin. Chem. Lett. 23 (2012) 1189-1192.

    5. [5]

      [5] I.M.C. Lo, X. Yang, Laboratory investigation of the migration of hydrocarbons in organobentonite, Environ. Sci. Technol. 35 (2001) 620-625.

    6. [6]

      [6] Q. Zhou, M.C. Zhang, C.D. Shuang, Z.Q. Li, A.M. Li, Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment, Chin. Chem. Lett. 23 (2012) 745-748.

    7. [7]

      [7] M.B. Madhusudana Reddy, M.A. Pasha, Environment friendly protocol for the synthesis of nitriles from aldehydes, Chin. Chem. Lett. 21 (2010) 1025-1028.

    8. [8]

      [8] A. Khandelwal, A.J. Rabideau, Enhancement of soil-bentonite barrier performance with the addition of natural humus, Contam. Hydrol. 45 (2000) 267-282.

    9. [9]

      [9] L.Z. Zhu, B.L. Chen, Use of bentonite-based sorbents in organic pollutant abatements, Process. Chem. 21 (2009) 420-429.

    10. [10]

      [10] C.R. Ryan, S.R. Day, Soil-cement-bentonite slurry walls, GSP 1 (2002) 713-727.

    11. [11]

      [11] H.W. Mott, W.J. Weber, Factors influencing organic contaminant diffusivities in soil-bentonite cutoff barriers, Environ. Sci. Technol. 25 (1991) 1708-1715.

    12. [12]

      [12] A. Khandelwal, A.J. Rabideau, P.L. Shen, Analysis of diffusion and sorption of organic solutes in soil-bentonite barrier materials, Environ. Sci. Technol. 32 (1998) 1333-1339.

    13. [13]

      [13] L.M. Candelaria, M.R. Matsumoto, Effects of NAPL contaminants on the permeability of a soil-bentonite slurry wall material, Transport. Porous Med. 38 (2000) 43-56.

    14. [14]

      [14] M.M. Krol, R.K. Rowe, Diffusion of TCE through soil-bentonite slurry walls, Soil Sediment Contam. 13 (2004) 81-101.

    15. [15]

      [15] S.L. Garvin, G.S. Hayles, The chemical compatibility of cement-bentonite cut-off wall material, Constr. Build. Mater. 13 (1999) 329-341.

    16. [16]

      [16] M. Toor, B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye, Chem. Eng. J. 187 (2012) 79-88.

    17. [17]

      [17] C.E. Lee, S. Chandra, Y.K. Leong, Structural recovery behaviour of kaolin, bentonite and K-montmorillonite slurries, Powder Technol. 223 (2012) 105-109.

    18. [18]

      [18] C. Breen, C.M. Bejarano-Bravo, L. Madrid, et al., Na/Pb, Na/Cd and Pb/Cd exchange on a low iron Texas bentonite in the presence of competing H+ ion, Colloid Surface A 155 (1999) 211-219.

  • 加载中
    1. [1]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    2. [2]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    3. [3]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    4. [4]

      Jinhui XuYanting ZhangKecheng WenXinyu WangZhiwei YangYuan HuangGuozhong ZhengLupeng HuangJing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240

    5. [5]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    6. [6]

      Yuhao MaYufei ZhouHongli LiCheng FangMingchuan YuShaoxia YangJunfeng Niu . Photoelectrocatalytic degradation of refractory organic pollutants in water: Mechanism of active species generation by modulating the photoanode micro-interface. Chinese Chemical Letters, 2026, 37(1): 111249-. doi: 10.1016/j.cclet.2025.111249

    7. [7]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    8. [8]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    9. [9]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    10. [10]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    11. [11]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    12. [12]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    13. [13]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    14. [14]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    15. [15]

      Tingting DuSiyu LuZongnan ZhuMei ZhuYan ZhangJian ZhangJixiang Chen . Pyrazole derivatives: Recent advances in discovery and development of pesticides. Chinese Chemical Letters, 2025, 36(9): 110912-. doi: 10.1016/j.cclet.2025.110912

    16. [16]

      He GuoYongchun WangJunlei WangShoufeng TangTiecheng Wang . Review on application of non-thermal plasma for disinfection: Direct plasma and indirect plasma-activated water. Chinese Chemical Letters, 2026, 37(2): 111275-. doi: 10.1016/j.cclet.2025.111275

    17. [17]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    18. [18]

      Zhongchao ZhouJian SongYinghao XieYuqian MaHong HuHui LiLei ZhangCharles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906

    19. [19]

      Ruiting NiKwame Nana OpokuXingrong LiYarao GaoYanyun WangFu Yang . Recent advance in utilization of advanced composite photothermal materials for water disinfection: Synthesis, mechanism, and application. Chinese Chemical Letters, 2025, 36(9): 110813-. doi: 10.1016/j.cclet.2024.110813

    20. [20]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

Metrics
  • PDF Downloads(0)
  • Abstract views(1457)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return