Citation: Chao Wu, Zhi-Wu Liang, Ying-Ying Xu, Wei-Min He, Jian-Nan Xiang. Gold-catalyzed oxazoles synthesis and their relevant antiproliferative activities[J]. Chinese Chemical Letters, ;2013, 24(12): 1064-1066. shu

Gold-catalyzed oxazoles synthesis and their relevant antiproliferative activities

  • Corresponding author: Wei-Min He,  Jian-Nan Xiang, 
  • Received Date: 3 May 2013
    Available Online: 5 June 2013

    Fund Project: This work was supported by NSFC (No. 21276068) (No. 21276068)Hunan Natural Science Foundation (No. 11JJ5008). (No. 2010SK2001)

  • Nine 5-aryl-2-methyloxazole derivatives were synthesized via gold-catalyzed alkyne oxidation. All of the compounds have been screened for their antiproliferative activities against MCF-7 cell (human breast carcinoma), A549 cell (human lung carcinoma) and Hela cell (human cervical carcinoma) lines in vitro. The results revealed that compounds 1b,1c and 1d exhibited strong inhibitory activities against the MCF-7 cell lines (with IC50 values of 4.6, 9.7 and 2.2 μmol/L, respectively).
  • 加载中
    1. [1]

      [1] (a) D. Kumar, M. Kumar, K.H. Chang, et al., An expeditious synthesis and anticancer activity of novel 4-(3'-indolyl)oxazoles, Eur. J. Med. Chem. 45 (2010) 1244- 1249;

    2. [2]

      (b) Z. Jin, Muscarine, imidazole, oxazole, and thiazole alkaloids, Nat. Prod. Rep. 28 (2011) 1143-1191;

    3. [3]

      (c) V.S.C. Yeh, Recent advances in the total syntheses of oxazole-containing natural products, Tetrahedron 60 (2004) 11995-12042;

    4. [4]

      (d) B. Wang, T. Hansen, T. Wang, et al., Total synthesis of phorboxazole A via de novo oxazole formation: strategy and component assembly, J. Am. Chem. Soc. 133 (2011) 1484-1505.

    5. [5]

      [2] (a) R. Misra, H.Y. Xiao, K. Kim, et al., N-(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl] methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent, J. Med. Chem. 47 (2004) 1719-1728;

    6. [6]

      (b) Y. Koyama, K. Yokose, L. Dolby, et al., Isolation, characterization and synthesis of pimprinine, pimprinethine and pimprinaphine, metabolites of Streptoverticillium olivoreticuli, Agric. Biol. Chem. 45 (1981) 1285-1287.

    7. [7]

      [3] A.O.D. Souza, M.T.C. Pedrosa, J.B. Alderete, et al., Cytotoxicity, antitumoral and antimycobacterial activity of tetrazole and oxadiazole derivatives, Pharmazie 60 (2005) 396-397.

    8. [8]

      [4] K. Atul, A. Pervez, M.A. Ram, et al., Novel 2-aryl-naphtho[1,2-d]oxazole derivatives as potential PTP-1B inhibitors showing antihyperglycemic activities, Eur. J. Med. Chem. 44 (2009) 109-116.

    9. [9]

      [5] L.S. Boulos, M.H.N. Arsanious, E.F. Ewies, Studies on phosphonium Ylides XXV: the behavior of active phosphacumulene and stabilized alkylidenephosphoranes towards 5-(4H)-oxazolones, Phosphorus Sulfur Silicon Relat. Elem. 184 (2009) 275-290.

    10. [10]

      [6] M. Natesan, Z. Gu, P. Stein, Biphenylsulfonamide endothelin receptor antagonists. 2. Discovery of 4'-oxazolyl biphenylsulfonamides as a new class of potent, highly selective ETA antagonists, J. Med. Chem. 43 (2000) 3111-3117.

    11. [11]

      [7] W.S. Yang, K. Shimada, D. Delva, et al., Identification of simple compounds with microtubule-binding activity that inhibit cancer cell growth with high potency, ACS Med. Chem. Lett. 3 (2012) 35-38.

    12. [12]

      [8] I. Cano, E. Álvarez, M.C. Nicasio, et al., Regioselective formation of 2,5-disubstituted oxazoles via copper(i)-catalyzed cycloaddition of acyl azides and 1-alkynes, J. Am. Chem. Soc. 133 (2011) 191-193.

    13. [13]

      [9] E.E. Wiegand, D.W. Rathburn, Polyphosphoric acid cyclization of acetamidoketones to 2,5-dimethyl-1,3-oxazoles, Synthesis 2 (1970) 648-649.

    14. [14]

      [10] (a) A.S.K. Hashmi, Gold-catalyzed organic reactions, Chem. Rev. 107 (2007) 3180-3211;

    15. [15]

      (b) A. Corma, A. Leyva-Perez, M. Sabater, et al., Gold-catalyzed carbon-heteroatom bond-forming reactions, Chem. Rev. 111 (2011) 1657-1712;

    16. [16]

      (c) A.S.K. Hashmi, C. Hubbert, Gold and organocatalysis combined, Angew. Chem. Int. Ed. 49 (2010) 1010-1012;

    17. [17]

      (d) B. Alcaide, P. Almendros, J. Alonso, Gold catalyzed oxycyclizations of alkynols and alkyndiols, Org. Biomol. Chem. 9 (2011) 4405-4416.

    18. [18]

      [11] (a) J. Xiao, X.W. Li, Gold a-oxo carbenoids in catalysis: catalytic oxygen-atom transfer to alkynes, Angew. Chem. Int. Ed. 50 (2011) 7226-7236;

    19. [19]

      (b) B. Lu, C.Q. Li, L.M. Zhang, Gold-catalyzed highly regioselective oxidation of C- C triple bonds without acid additives: propargyl moieties as masked a,b-unsaturated carbonyls, J. Am. Chem. Soc. 132 (2010) 14070-14072;

    20. [20]

      (c) L.W. Ye, W.M. He, L.M. Zhang, A flexible and stereoselective synthesis of azetidin-3-ones through gold-catalyzed intermolecular oxidation of alkynes, Angew. Chem. Int. Ed. 50 (2011) 3236-3239.

    21. [21]

      [12] W.M. He, C.Q. Li, L.M. Zhang, An efficient [2 + 2 + 1] synthesis of 2,5-disubstituted oxazoles via gold-catalyzed intermolecular alkyne oxidation, J. Am. Chem. Soc. 133 (2011) 8482-8485.

    22. [22]

      [13] (a) T. Sakamoto, M. Shiraiwa, Y. Konodo, et al., A facile synthesis of ethynylsubstituted six-membered n-heteroaromatic compounds, Synthesis (1983) 312- 314;

    23. [23]

      (b) A. Gangjee, J. Yu, R. Kisliuk, 2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]pynmidines as potential inhibitors of thymidylate synthase, J. Heterocyclic Chem. 39 (2002) 833-840;

    24. [24]

      (c) J.J. Qi, C.H. Tung, Development of benzothiazole ‘click-on' fluorogenic dyes, Bioorg. Med. Chem. Lett. 21 (2011) 320-323.

    25. [25]

      [14] (a) M. Rosenblum, N. Brawn, J. Papenmeier, et al., Synthesis of ferrocenylacetylenes, J. Organometal. Chem. 6 (1966) 173-180;

    26. [26]

      (b) A. Aguilar, A. Allen, E. Cabrera, et al., Ferrocenylketene and ferrocenyl-1,2- bisketenes: δirect observation and reactivity measurements, J. Org. Chem. 70 (2005) 9556-9561.

    27. [27]

      [15] Spectroscopic data: 1a: 1H NMR (400 MHz, CDCl3): δ 2.52 (s, 3H), 7.20 (s, 1H), 7.30 (t, 1H, J = 7.6 Hz), 7.40 (t, 2H, J = 7.6 Hz), 7.60 (d, 2H, J = 7.2 Hz). HRMS-EI: [M+] Calcd. for C10H9NO 159.0679, Found 159.0680. 1b: 1H NMR (400 MHz, CDCl3): δ 2.58 (s, 3H), 7.33 (s, 1H), 7.49 (m, 2H), 7.66 (d, 1H, J = 7.2 Hz), 7.72 (d, 2H, J = 7.2 Hz), 7.87 (d, 1H, J = 7.6 Hz), 8.09 (s, 1H). HRMS-EI: [M+] Calcd. for C14H11NO 209.0836, Found 209.0838. 1c: 1H NMR (400 MHz, CDCl3): δ 2.55 (s, 3H), 7.30 (s, 1H), 7.32-7.36 (m, 1H), 7.87 (d, 1H, J = 8.0 Hz), 8.53 (d, 1H, J = 6.8 Hz), 8.87 (s, 1H). HRMS-EI: [M+] Calcd. for C9H8N2O 160.0632, Found 160.0633. 1d: 1H NMR (400 MHz, CDCl3): δ 2.59 (s, 3H), 7.42 (s, 1H), 7.57 (t, 1H, J = 8.8 Hz), 7.671 (t, 1H, J = 8.2 Hz), 7.85 (d, 1H, J = 8.4 Hz), 8.10 (d, 1H, J = 8.4 Hz), 8.31 (s, 1H), 9.14 (s, 1H). HRMS-EI: [M+] Calcd. for C13H10N2O 210.0788, Found 210.0789. 1e: 1H NMR (400 MHz, CDCl3): δ 2.50 (s, 3H), 7.05 (s, 1H), 7.25-7.27 (m, 1H), 7.35-7.37 (m, 1H), 7.46-7.47 (m, 1H). HRMS-EI: [M+] Calcd. for C8H7NOS 165.0243, Found 165.0242. 1f: 1H NMR (400 MHz, CDCl3): δ 2.51 (s, 3H), 7.32 (s, 1H), 7.40-7.44 (m, 1H), 7.46-7.50 (m, 1H), 7.69 (s, 1H), 7.90 (d, 1H, J = 9.6 Hz), 8.05 (d, 1H, J = 8.0 Hz). HRMS-EI: [M+] Calcd. for C12H9NOS 215.0400, Found 215.0401. 1g: 1H NMR (400 MHz, CDCl3): δ 2.50 (s, 3H), 7.29 (s, 1H), 7.43-7.61 (m, 2H), 7.86 (d, 1H, J = 7.8 Hz), 8.03 (d, 1H, J = 7.4 Hz). HRMS-EI: [M+] Calcd. for C11H8N2OS 216.0352, Found 216.0351. 1h: 1HNMR(400 MHz, CDCl3): δ 2.48 (s, 3H), 4.12 (s, 5H), 4.30 (s, 2H), 4.56 (s, 2H), 6.82 (s, 1H). HRMS-EI: [M+] Calcd. for C14H13FeNO 267.0342, Found 267.0344. Procedure to synthesis of 1i: A solution of NaOH (1.0 mol/L, 3 mL) was added to a stirring solution of 2-methyl-5-(1-tosyl-1H-indol-3-yl)oxazole 6 (106 mg, 0.3 mmol) in 5 mL of methanol and heated to reflux at 80℃ under nitrogen overnight until starting material was consumed as monitored by TLC. Methanol was removed in vacuo and product was extracted with ether (3×20 mL), washed with brine, dried over magnesium sulfate, and concentrated in vacuo to give 56 mg (95% yield) of a yellow solid. 1H NMR (400 MHz, CDCl3): δ 2.58 (s, 3H), 7.16 (s, 1H), 7.22-7.32 (m, 2H), 7.46 (d, 1H, J = 7.6 Hz), 7.52 (d, 1H, J = 7.6 Hz), 7.78 (d, 1H, J = 8.0 Hz), 8.38 (s, 1H). HRMS-EI: [M+] Calcd. for C12H10N2O 198.0788, Found 198.0790.

    28. [28]

      [16] D.J. Gorin, B.D. Sherry, F.D. Toste, Ligand effects in homogeneous Au catalysis, Chem. Rev. 108 (2008) 3351-3378.

    29. [29]

      [17] (a) M. Patra, G. Gasser, N. Metzler-Nolte, Small organometallic compounds as antibacterial agents, Dalton Trans. 41 (2012) 6350-6358;

    30. [30]

      (b) R.D. Miao, J. Wei, M.H. Lv, et al., Conjugation of substituted ferrocenyl to thiadiazine as apoptosis-inducing agents targeting the Bax/Bcl-2 pathway, Eur. J. Med. Chem. 46 (2011) 5000-5009;

    31. [31]

      (c) B.H. Long, C.L. He, Y.B. Yang, et al., Synthesis, characterization and antibacterial activities of some new ferrocene-containing penems, Eur. J. Med. Chem. 45 (2010) 1181-1188;

    32. [32]

      (d) B.H. Long, S.Z. Liang, D.C. Xin, et al., Synthesis, characterization and in vitro antiproliferative activities of new 13-cis-retinoyl ferrocene derivatives, Eur. J. Med. Chem. 44 (2009) 2572-2576;

    33. [33]

      (e) S.L. Shen, J. Zhu, M. Li, et al., Synthesis of ferrocenyl pyrazole-containing chiral aminoethanol derivatives and their inhibition against A549 and H322 lung cancer cells, Eur. J. Med. Chem. 54 (2012) 287-294.

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    4. [4]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    5. [5]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    6. [6]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    7. [7]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    8. [8]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    9. [9]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    12. [12]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    13. [13]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    14. [14]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    15. [15]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    16. [16]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    17. [17]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    20. [20]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

Metrics
  • PDF Downloads(0)
  • Abstract views(677)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return