Citation: Hui Yuan, Guang-Tong Xu, Hui-Feng Li, Li-Jun Lu. Study of oxidic and sulfided selective hydrodesulfurization catalysts for gasoline using Raman spectroscopy[J]. Chinese Chemical Letters, ;2013, 24(12): 1041-1044. shu

Study of oxidic and sulfided selective hydrodesulfurization catalysts for gasoline using Raman spectroscopy

  • Corresponding author: Guang-Tong Xu, 
  • Received Date: 31 May 2013
    Available Online: 14 June 2013

  • A series of CoMo/Al2O3 catalysts for selective hydrodesulfurization (HDS) of gasoline were studied with Raman spectroscopy, a powerfulmethod that creates specific signals for the states and the distributions of oxidic precursors and sulfided active phases. The higher the Mo and Co, the lower the tetrahedrally coordinated molybdate, and the higher the polymolybdate. But the amount of polymolybdate decreased when CoMoO4 appeared. Cobalt-promoted polymolybdate was the precursor, and its relative content correlated well with the HDS selectivity. For sulfided catalysts, adding the cobalt-promoter led to local distortion-disorder of the MoS2 structure and the formation of a CoMoS phase. This method can provide important information for designing new industrial selective-HDS catalysts.
  • 加载中
    1. [1]

      [1] S. Bruneta, D. Meya, G. Perot, et al., On the hydrodesulfurization of FCC gasoline: a review, Appl. Catal. A: Gen. 278 (2005) 143-172.

    2. [2]

      [2] M.F. Li, H.F. Li, F. Jiang, et al., The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalyst, Catal. Today 149 (2010) 35- 39.

    3. [3]

      [3] M.F. Li, H.F. Li, F. Jiang, et al., Effect of surface characteristics of different alumina on metal-support interaction and hydrodesulfurization activity, Fuel 88 (2009) 1281-1285.

    4. [4]

      [4] E. Payen, J. Grimblot, S. Kasztelan, Study of oxidic and reduced alumina-supported molybdate and heptamolybdate species by in situ laser Raman spectroscopy, J. Phys. Chem. 91 (1987) 6642-6648.

    5. [5]

      [5] C. Li, Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy, J. Catal. 216 (2003) 203- 212.

    6. [6]

      [6] S. Gonzalez-Cortes, T. Xiao, P.M. Costa, et al., Urea-organic matrix method: an alternative approach to prepare Co-MoS2/γ-Al2O3 HDS catalyst, Appl. Catal. A: Gen. 270 (2004) 209-222.

    7. [7]

      [7] Qiherima, H. Yuan, H.F. Li, et al., Investigation on the active phase of CoMo catalyst for selective HDS by low temperature in situ FT-IR, Chin. Chem. Lett. 22 (2011) 366-369.

    8. [8]

      [8] Qiherima, H. Yuan, Y.H. Zhang, et al., In situ FTIR and XPS study on selective hydrodesulfurization catalyst of FCC gasoline, Spectrosc. Spectral Anal. 31 (2011) 1752-1757.

    9. [9]

      [9] M. Gerhard, In situ Raman spectroscopy - a valuable tool to understand operating catalysts, J. Mol. Catal. A: Chem. 158 (2000) 45-65.

    10. [10]

      [10] G. Xiong, C. Li, Z. Feng, et al., Surface coordination structure of molybdate with extremely low loading on g-alumina characterized by UV resonance Raman spectroscopy, J. Catal. 186 (1999) 234-237.

    11. [11]

      [11] Z.B. Wei, C.D. Wei, Q. Xin, Study of the reducing and sulfiding process of Mosupported catalyst by in situ LRS, Acta Physico-Chem. Sin. 10 (1994) 402-408.

    12. [12]

      [12] T. Xiao, A.P. York, H. Al-Megren, et al., Preparation and characterization of bimetallic cobalt and molybdenum carbides, J. Catal. 202 (2001) 100-109.

    13. [13]

      [13] L. Le-Bihan, P. Blanchard, M. Fournier, et al., Raman spectroscopic evidence for the existence of 6-molybdoaluminate entities on an Mo/Al2O3 oxidic precursor, J. Chem. Soc. Faraday Trans. 94 (1998) 937-940.

    14. [14]

      [14] E. Payen, S. Kasztelan, S. Houssenbay, et al., Genesis and characterization by laser Raman spectroscopy and high-resolution electron microscopy of supported MoS2 crystallites, J. Phys. Chem. 93 (1989) 6501-6506.

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    7. [7]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    8. [8]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    9. [9]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    16. [16]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    17. [17]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    18. [18]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    19. [19]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    20. [20]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

Metrics
  • PDF Downloads(0)
  • Abstract views(720)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return