Citation: Shuai Mua, Xiao-Shuai Xie, Duan Niu, Da-Shuai Zhang, Deng-Ke Liu, Chang-Xiao Liu. Synthesis and biological evaluation of novel derivatives of desloratadine[J]. Chinese Chemical Letters, ;2013, 24(6): 531-534. shu

Synthesis and biological evaluation of novel derivatives of desloratadine

  • Corresponding author: Chang-Xiao Liu, 
  • Received Date: 2 February 2013
    Available Online: 11 March 2013

  • Series of novel derivatives of desloratadine designed as arginine vasopressin receptor antagonists were synthesized and structurally characterized by melting points, 1H NMR and HRMS. Their in vivo diuretic activities were evaluated on rats, and several target compounds showed promising diuretic results, especially compounds 8, 18, 27 and 31. Further in vitro bonding assay and cAMP assay showed that these compounds had a higher affinity to vasopressin V2 receptor than V1a receptor. Our studies indicated that desloratadine may be an active substructure for novel arginine vasopressin receptor antagonist development.
  • 加载中
    1. [1]

      [1] P. Sanghi, B.F. Uretsky, E.R. Schwarz, Vasopressin antagonism: a future treatment option in heart failure, Eur. Heart J. 26 (2005) 538-543.

    2. [2]

      [2] G. Decaux, A. Soupart, G. Vassart, Non-peptide arginine-vasopressin antagonists: the vaptans, The Lancet 371 (2008) 1624-1632.

    3. [3]

      [3] R. Lemmens-Gruber, M. Kamyar, Vasopressin antagonists, Cell. Mol. Life Sci. 63 (2006) 1766-1779.

    4. [4]

      [4] F. Ali, M.A. Raufi, B. Washington, Conivaptan: a dual receptor vasopressin V-1a/V-2 antagonist, Cardiovasc. Drug Rev. 25 (2007) 261-279.

    5. [5]

      [5] S.K. Kumar, P.J. Mather, AVP receptor antagonists in patients with CHF, Heart Fail. Rev. 14 (2009) 83-86.

    6. [6]

      [6] T. Miyazaki, H. Fujiki, Y. Yamamura, Tolvaptan, an orally active vasopressin V-2-receptor antagonist-pharmacology and clinical trials, Cardiovasc. Drug Rev. 25 (2007) 1-13.

    7. [7]

      [7] 3: 1H NMR (400 MHz, CDCl3): δ 2.08 (s, 3H), 2.29-2.53 (m, 4H), 2.76-2.88 (m, 2H), 3.12-3.40 (m, 4H), 3.61-3.67 (m, 1H), 3.99-4.07 (m, 1H), 7.07-7.16 (m, 4H), 7.42 (d, 1H, J = 7.6 Hz), 8.38 (d, 1H, J = 3.2 Hz). 4: 1H NMR (400 MHz, CDCl3): δ 1.14 (t, 3H, J = 7.4 Hz), 2.34-2.72 (m, 6H), 2.76-2.89 (m, 2H), 3.12-3.43 (m, 4H), 3.64-3.70 (m, 1H), 4.03-4.11 (m, 1H), 7.08-7.17 (m, 4H), 7.43-7.45 (d, 1H, J = 7.6 Hz), 8.40 (d, 1H, J = 3.6 Hz). 5: 1H NMR (400 MHz, CDCl3): δ 1.13 (dd, 6H, J1 = 9.28.0 Hz, J2 = 9.216.0 Hz), 2.32-2.58 (m, 4H), 2.76-2.89 (m, 3H), 3.10-3.43 (m, 4H), 3.71-3.77 (m, 1H), 4.05-4.12 (m, 1H), 7.08-7.17 (m, 4H), 7.44 (d, 1H, J = 7.2 Hz), 8.40 (d, 1H, J = 3.6 Hz). 6: 1H NMR (400 MHz, CDCl3): δ 0.96 (t, 3H, J = 9.2 Hz), 1.63-1.78 (m, 2H), 2.33-2.40 (m, 5H), 2.45-2.56 (m, 1H), 2.57-2.89 (m, 2H), 3.10-3.43 (m, 4H), 3.64-3.72 (m, 1H), 7.08-7.17 (m, 4H), 7.43 (d, 1H, J = 7.6 Hz), 8.39-8.41 (t, 1H, J = 2.2 Hz). 7: 1H NMR (400 MHz, CDCl3): δ 1.62-1.75 (m, 3H), 2.39-2.48 (m, 3H), 2.49-2.66 (m, 1H), 2.68-2.88 (m, 2H), 2.99-3.29 (m, 1H), 3.31-3.49 (m, 3H), 3.65-4.23 (m, 2H), 4.54-4.62 (m, 1H), 7.08-7.17 (m, 4H), 7.43 (d, 1H, J = 7.6 Hz), 8.40 (d, 1H, J = 3.6 Hz). 8: 1H NMR (400 MHz, CDCl3): δ 2.09-2.19 (m, 2H), 2.30-2.43 (m, 3H), 2.46-2.59 (m, 3H), 2.76-2.89 (m, 2H), 3.08-3.42 (m, 4H), 3.62-4.10 (m, 4H), 7.08-7.17 (m, 4H), 7.44 (d, 1H, J = 7.6 Hz), 8.40 (d, 1H, J = 4.8 Hz). 9: 1H NMR (400 MHz, CDCl3): δ 1.37 (t, 3H, J = 14.2 Hz), 2.37-2.45 (m, 2H), 2.47-2.51 (m, 1H), 2.52-2.65 (m, 1H), 2.76-2.90 (m, 2H), 2.96 (q, 2H, J = 7.5 Hz), 3.13-3.20 (m, 2H), 3.30-3.42 (m, 2H), 3.47-3.66 (m, 2H), 7.09-7.18 (m, 4H), 7.44 (dd, 1H, J1 = 9.21.2 Hz, J2 = 9.28.8 Hz), 8.40 (dd, 1H, J1 = 9.21.2 Hz, J2 = 9.25.6 Hz). 10: 1H NMR (400 MHz, CDCl3): δ 2.49-2.54 (m, 3H), 2.60-2.66 (m, 1H), 2.75-2.89 (m, 2H), 3.00-3.06 (m, 2H), 3.28-3.47 (m, 4H), 6.01 (d, 1H, J = 10.0 Hz), 6.22 (d, 1H, J = 16.4 Hz), 6.43 (dd, 1H, J1 = 9.26.0 Hz, J2 = 9.216.8 Hz), 7.07-7.17 (m, 4H), 7.43 (d, 1H, J = 8.8 Hz), 8.39 (d, 1H, J = 6.0 Hz). 11: 1H NMR (400 MHz, CDCl3): δ 2.31-2.58 (m, 4H), 2.76-2.89 (m, 2H), 3.22-3.43 (m, 4H), 3.62 (br s, 1H), 4.14 (br s, 1H), 7.11-7.46 (m, 10H), 8.38 (br s, 1H). 12: 1H NMR (400 MHz, CDCl3): δ 2.28-2.64 (m, 6H), 2.75-2.95 (m, 2H), 3.078 (br s, 1H), 3.29-3.44 (m, 4H), 4.26 (br s, 1H), 7.04-7.46 (m, 9H), 8.33 (d, 0.5H, J = 3.6 Hz), 8.43 (d, 0.5H, J = 3.6 Hz). 13: 1H NMR (400 MHz, CDCl3): δ 2.35-2.50 (m, 7H), 2.77-2.89 (m, 2H), 3.27-3.42 (m, 4H), 3.66 (br s, 1H), 4.16 (br s, 1H), 7.12-7.44 (m, 9H), 8.38 (br s, 1H). 14: 1H NMR (400 MHz, CDCl3): δ 2.33-2.48 (m, 7H), Table 2 The substituents, melting points, HRMS, purity and diuretic activity of compounds 11-31. Compound X R2 Melting point (8C) ESI-HRMS [M+H]+ Purity (HPLC, %) Total volume of urine (0-20 h, mL) 11 CO H 91.3-92.6 415.1572 98.3 6.6 3.7 12 CO 2-CH3 80.5-81.3 429.1726 99.1 5.8 3.2 13 CO 4-CH3 165.2-165.8 429.1724 98.2 9.6 2.1 14 CO 3-CH3 93.6-94.8 429.1732 98.3 8.0 4.4 15 CO 2-Cl 109.5-110.8 449.1190 99.9 5.8 3.1 16 CO 3-Cl 96.0-96.8 449.1185 96.8 5.9 4.5 17 CO 2-F 129.8-131.5 433.1481 97.2 6.0 2.4 18 CO 2,5-DiF 159.5-161.0 451.1385 97.4 21.1 5.6 19 CO 2-OCH3 105.2-107.9 445.1676 99.3 16.8 4.8 20 CO 3-OCH3 71.2-72.8 445.1676 99.9 11.5 1.9 21 CO 3-NO2 193.8-194.6 460.1427 99.9 9.6 4.1 22 CO 4-NO2 188.2-189.0 460.1427 98.9 9.5 0.7 23 SO2 2-CH3 92.8-94.9 465.1395 99.6 14.9 4.0 24 SO2 4-CH3 209.2-209.7 465.1395 99.9 5.4 2.4 25 SO2 2-Cl 169.8-170.4 485.0857 96.6 10.3 4.8 26 SO2 2-NO2 176.9-177.6 496.1097 98.3 9.4 3.6 27 SO2 3-NO2 221.7-222.8 496.1088 98.5 26.5 4.3 28 SO2 4-NO2 >230 496.1087 98.9 17.7 5.5 29 SO2 2,5-DiCl 95.8-96.0 519.0463 98.5 13.0 3.0 30 SO2 2,5-DiOCH3 182.9-184.3 511.1452 99.9 21.4 5.5 31 SO2 2-CH3-5-NO2 178.1-179.2 510.1241 99.5 24.0 5.1 Table 3 In vitro binding and cAMP assay data. Compound Radioligand binding assay cAMP assay (V2, IC50, nmol/L) V2 (IC50, nmol/L) V1a (IC50, nmol/L) V1a/V2 5 20 440 22 130 8 11 160 15 260 11 35 930 27 93 12 9 540 60 30 15 13 820 63 69 18 16 490 31 180 23 8 380 48 45 27 9 91 10 37 S. Mu et al. / Chinese Chemical Letters 24 (2013) 531-534 533 2.75-2.88 (m, 2H), 3.22-3.42 (m, 4H), 3.62 (br s, 1H), 4.16 (br s, 1H), 7.10-7.24 (m, 8H), 7.43 (d, 1H, J = 7.2 Hz), 8.36 (br s, 1H). 15: 1H NMR (400 MHz, CDCl3):d 2.17-2.66 (m, 4H), 2.75-2.88 (m, 2H), 3.01-3.67 (m, 1H), 3.28-3.44 (m, 4H), 4.14-4.28 (m, 1H), 7.02-7.44 (m, 9H), 8.29-8.41 (m, 1H). 16: 1H NMR (400 MHz, CDCl3): δ 2.28-2.68 (m, 4H), 2.77-2.89 (m, 2H), 3.22-3.42 (m, 4H), 3.59 (br s, 1H), 4.11 (br s, 1H), 7.12-7.26 (m, 4H), 7.27-7.39 (m, 3H), 7.41-7.46 (m, 2H), 8.38 (br s, 1H). 17: 1H NMR (400 MHz, CDCl3): δ 2.24-2.27 (m, 4H), 2.75-2.96 (m, 2H), 3.19 (br s, 1H), 3.31-3.55 (m, 4H), 4.13-4.40 (m, 1H), 7.02-7.24 (m, 6H), 7.32-7.38 (m, 2H), 7.45-7.51 (m, 1H), 8.34-8.48 (m, 1H). 18: 1H NMR (400 MHz, CDCl3): δ 2.28-2.64 (m, 4H), 2.74-2.89 (m, 2H), 3.17-3.28 (m, 1H), 3.30-3.51 (m, 4H), 4.11-4.21 (m, 1H), 7.02-7.17 (m, 7H), 7.42 (dd, 1H, J1 = 9.28.0 Hz, J2 = 9.211.2 Hz), 8.38 (dd, 1H, J1 = 9.24.0 Hz, J2 = 9.230.8 Hz). 19: 1H NMR (400 MHz, CDCl3): δ 2.20-2.49 (m, 4H), 2.52-2.88 (m, 2H), 3.00-3.12 (m, 1H), 3.23-3.46 (m, 4H), 3.756-3.84 (m, 3H), 4.19-4.31 (m, 1H), 6.83-6.98 (m, 2H), 7.03-7.16 (m, 5H), 7.27-7.44 (m, 2H), 8.32-8.42 (m, 1H). 20: 1H NMR (400 MHz, CDCl3): δ 2.02-2.68 (m, 4H), 2.75-2.89 (m, 2H), 3.22-3.43 (m, 4H), 3.60-3.86 (m, 4H), 4.07-4.37 (m, 1H), 6.89-6.94 (m, 3H), 7.12-7.15 (m, 4H), 7.26-7.59 (m, 2H), 8.39 (br s, 1H). 21: 1H NMR (400 MHz, CDCl3): δ 2.18-2.45 (m, 4H), 2.81-2.82 (m, 2H), 3.42-3.44 (m, 5H), 3.96 (br s, 1H), 7.11-7.30 (m, 4H), 7.56-7.87 (m, 3H), 8.21-8.36 (m, 3H). 22: 1H NMR (400 MHz, DMSO-d6): δ 2.18-2.32 (m, 2H), 2.41 (br s, 1H), 2.79-2.84 (m, 2H), 3.17-3.36 (m, 6H), 3.97 (br s, 1H), 7.05-7.32 (m, 4H), 7.54-7.57 (m, 1H), 7.68 (d, 2H, J = 8.4 Hz), 8.25-8.36 (m, 3H). 23: 1H NMR (400 MHz, CDCl3): δ 2.33-2.44 (m, 3H), 2.54-2.60 (m, 4H), 2.63-2.83 (m, 2H), 3.01-3.07 (m, 2H), 3.29-3.48 (m, 4H), 7.05-7.14 (m, 4H), 7.26-7.30 (m, 2H), 7.41-7.45 (m, 2H), 7.86 (t, 1H, J = 4.0 Hz), 8.39 (d, 1H, J = 3.2 Hz). 24: 1H NMR (400 MHz, CDCl3): δ 2.36-2.37 (m, 2H), 2.44-2.63 (m, 5H), 2.70-2.83 (m, 2H), 2.93-3.00 (m, 2H), 3.17-3.32 (m, 4H), 6.99-7.13 (m, 4H), 7.31 (d, 2H, J = 8.0 Hz), 7.38-7.41 (m, 1H), 7.63 (d, 2H, J = 9.6 Hz), 8.35-8.36 (dd, 1H, J1 = 9.21.6 Hz, J2 = 9.24.8 Hz). 25: 1H NMR (400 MHZ, DMSO-d6): δ 2.21-2.43 (m, 4H), 2.75-2.81 (m, 2H), 3.07-3.12 (m, 2H), 3.22-3.44 (m, 4H), 7.06 (d, 1H, J = 8.4 Hz), 7.16-7.19 (m, 2H), 7.28 (s, 1H), 7.53 (t, 2H, J = 6.4 Hz), 7.67 (q, 2H, J = 8.1 Hz), 7.96 (d, 1H, J = 7.6 Hz), 8.31 (d, 1H, J = 4.0 Hz). 26: 1H NMR (400 MHz, CDCl3): δ 2.39-2.43 (m, 2H), 2.46-2.64 (m, 2H), 2.73-2.87 (m, 2H), 3.16-3.39 (m, 4H), 3.50-3.59 (m, 2H), 7.05-7.16 (m, 4H), 7.42 (dd, 1H, J1 = 9.21.6 Hz, J2 = 9.27.6 Hz), 7.59-7.72 (m, 3H), 7.96-7.98 (m, 1H), 8.37 (t, 1H, J = 2.4 Hz). 27: 1H NMR (400 MHz, CDCl3): δ 2.40-2.41 (m, 2H), 2.50-2.57 (m, 1H), 2.62-2.68 (m, 1H), 2.71-2.86 (m, 2H), 3.09-3.15 (m, 2H), 3.22-3.36 (m, 4H), 7.01 (d, 2H, J = 8.0 Hz), 7.11-7.15 (m, 3H), 7.45 (d, 1H, J = 7.6 Hz), 7.76 (t, 1H, J = 8.0 Hz), 8.07-8.10 (m, 1H), 8.37 (d, 1H, J = 6.4 Hz), 8.44-8.59 (m, 1H), 8.59 (d, 1H, J = 2.0 Hz). 28: 1H NMR (400 MHz, CDCl3): δ 2.34-2.39 (m, 2H), 2.46-2.49 (m, 1H), 2.60-2.62 (m, 1H), 2.72-2.81 (m, 2H), 2.99-3.03 (m, 2H), 3.20-3.33 (m, 4H), 6.98 (d, 1H, J = 8.4 Hz), 7.05-7.13 (m, 3H), 7.39 (d, 1H, J = 7.6 Hz), 7.91-7.94 (m, 2H), 8.33-8.37 (m, 3H). 29: 1H NMR (400 MHz, CDCl3): δ 2.33-2.49 (m, 3H), 2.54-2.60 (m, 1H), 2.72-2.86 (m, 2H), 3.14-3.38 (m, 4H), 3.49-3.57 (m, 2H), 7.03-7.15 (m, 4H), 7.40-7.43 (m, 3H), 8.01 (t, 1H, J = 0.6 Hz), 8.36 (d, 1H, J = 4.8 Hz). 30: 1H NMR (400 MHz, CDCl3): δ 2.29-2.57 (m, 4H), 2.71-2.84 (m, 2H), 3.04-3.13 (m, 2H), 3.24-3.37 (m, 2H), 3.44-3.77 (m, 2H), 3.77 (s, 3H), 3.83 (s, 3H), 6.92-7.13 (m, 6H), 7.39-7.41 (m, 2H), 8.36 (dd, 1H, J1 = 9.21.6 Hz, J2 = 9.24.8 Hz). 31: 1H NMR (400 MHz, CDCl3): δ 2.38-2.62 (m, 4H), 2.73-2.88 (m, 5H), 3.12-3.52 (m, 6H), 7.03-7.15 (m, 4H), 7.43-7.51 (m, 2H), 8.25-8.37(m, 2H), 8.70 (d, 1H, J = 2.4 Hz).

  • 加载中
    1. [1]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    2. [2]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    3. [3]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    4. [4]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    5. [5]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    6. [6]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    7. [7]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    8. [8]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    9. [9]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    10. [10]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    11. [11]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    12. [12]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    13. [13]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    14. [14]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    15. [15]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    16. [16]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    17. [17]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    18. [18]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    19. [19]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    20. [20]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

Metrics
  • PDF Downloads(0)
  • Abstract views(702)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return