Citation: Zong-Hua Wang, Jian-Fei Xia, Fu-Yong Zhao, Qiang Han, Xin-Mei Guo, Hui Wang, Ming-Yu Ding. Determination of benzoic acid in milk by solid-phase extraction and ion chromatography with conductivity detection[J]. Chinese Chemical Letters, ;2013, 24(3): 243-245. shu

Determination of benzoic acid in milk by solid-phase extraction and ion chromatography with conductivity detection

  • Corresponding author: Zong-Hua Wang, 
  • Received Date: 8 November 2012
    Available Online: 16 January 2013

  • A simple, fast, precise and eco-friendly method, based on ion chromatography (IC) with a suppressed conductivity detector, was proposed for the determination of benzoic acid (BA) inmilk in this paper. The chromatographic separation was accomplished by using an anion exchange column eluted with 3.2 μmol/L aqueous Na2CO3 and 1.0 mmol/L aqueous NaHCO3 at a flow-rate of 0.7 mL/min. Themethod validation experiment provided excellent results with respect to linearity (correlation coefficient up to 0.9997), limit of detection (0.1 μg/L), recovery values (ranging from 88.0% to 93.0%) and relative standard deviation (RSD) (below 2.2%, n = 7).
  • 加载中
    1. [1]

      [1] M.G. Soni, G.A. Burdock, S.L. Taylor, N.A. Greenberg, Safety assessment of propyl paraben: a review of the published literature, Food Chem. Toxicol. 39 (2001) 513-532.

    2. [2]

      [2] P.D. Darbre, Underarm cosmetics and breast cancer, J. Appl. Toxicol. 23 (2003) 89-95.

    3. [3]

      [3] European Parliament and Council Directive, No. 95/2/EC, February 1995.

    4. [4]

      [4] C.Z. Dong, Y. Mei, L. Chen, Simultaneous determination of sorbic and benzoic acids in food dressing by headspace solid-phase microextraction and gas chromatography, J. Chromatogr. A 1117 (2006) 109-114.

    5. [5]

      [5] Z.F. Pan, L.L. Wang, W.M. Mo, et al., Determination of benzoic acid in soft drinks by gas chromatography with on-line pyrolytic methylation technique, Anal. Chim. Acta 545 (2005) 218-223.

    6. [6]

      [6] B. Saad, M.F. Bari, M.I. Saleh, K. Ahmad, M.K.M. Talib, Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography, J. Chromatogr. A 1073 (2005) 393-397.

    7. [7]

      [7] K. Ma, Y.N. Yang, X.X. Jiang, M. Zhao, Y.Q. Cai, Simultaneous determination of 20 food additives by high performance liquid chromatography with photo-diode array detector, Chin. Chem. Lett. 23 (2012) 492-495.

    8. [8]

      [8] I.M. Ferreir, E. Mendes, P. Brito, M.A. Ferreira, Simultaneous determination of benzoic and sorbic acids in quince jam by HPLC, Food Res. Int. 33 (2000) 113-117.

    9. [9]

      [9] S.A.V. Tfouni, M.C.F. Toledo, Determination of benzoic and sorbic acids in Brazilian food, Food Control 13 (2002) 117-123.

    10. [10]

      [10] C.Z. Dong, W.F. Wang, Headspace solid-phase microextraction applied to the simultaneousdetermination of sorbic and benzoic acids in beverages, Anal. Chim. Acta 562 (2006) 23-29.

    11. [11]

      [11] N. Penner, R. Ramanathan, J. Zgoda-Pols, S. Chowdhury, Quantitative determination of hippuric and benzoic acids in urine by LC-MS/MS using surrogate standards, J. Pharm. Biomed. Anal. 52 (2010) 534-543.

    12. [12]

      [12] F. Han, Y.Z. He, L. Li, et al., Determination of benzoic acid and sorbic acid in food products using electrokinetic flow analysis-ion pair solid phase extraction-capillary zone electrophoresis, Anal. Chim. Acta 618 (2008) 79-85.

    13. [13]

      [13] X.F. Zhang, S.X. Xu, Y.H. Sun, Y.Y. Wang, C. Wang, Simultaneous determination of benzoic acid and sorbic acid in food products by CE after on-line preconcentration by dynamic pH junction, Chromatographia 73 (2011) 1217-2122.

  • 加载中
    1. [1]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    2. [2]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    5. [5]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    6. [6]

      Peipei CUIYawen ZHENGPan LIPeiyan GUANZhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152

    7. [7]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    8. [8]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    9. [9]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    10. [10]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    11. [11]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    12. [12]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    13. [13]

      Qiao WangZiling JiangChuang YuLiping LiGuangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006

    14. [14]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    15. [15]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    16. [16]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    17. [17]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    18. [18]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    19. [19]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    20. [20]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

Metrics
  • PDF Downloads(0)
  • Abstract views(952)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return