Citation: Jing Xu, Qing-Dao Zeng. Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM[J]. Chinese Chemical Letters, ;2013, 24(3): 177-182. shu

Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM

  • Corresponding author: Qing-Dao Zeng, 
  • Received Date: 28 December 2012
    Available Online: 24 January 2013

  • In this review, a group of two-dimensional (2D) hydrogen-bonded supramolecular networks developed in our laboratory are discussed. Our attention ismainly focused on: (1) recognition of Fe3+ through twocomponent molecular networks; (2) site-selective fabrication of 2D fullerene arrays; and (3) fabrication of the nanoporous structure regulated by photoisomerization reaction process. It is envisioned that special supramolecular nanostructures, through H-bonding interactions, can be constructed or reconstructed to be further investigated toward the research of multi-component systems, molecule recognition, single molecular switches, and host-guest supramolecular chemistry.
  • 加载中
    1. [1]

      [1] J.M. Lehn, Toward self-organization and complex matter, Science 295 (2002) 2400-2403.

    2. [2]

      [2] G.M. Whitesides, B. Grzybowski, Self-assembly at all scales, Science 295 (2002) 2418-2421.

    3. [3]

      [3] T. Kudernac, S.B. Lei, J.A.A.W. Elemans, S. De Feyter, Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces, Chem. Soc. Rev. 38 (2009) 402-421.

    4. [4]

      [4] Y.L. Yang, C. Wang, Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy, Chem. Soc. Rev. 38 (2009) 2576-2589.

    5. [5]

      [5] J.A.A.W. Elemans, S.B. Lei, S. De Feyter, Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity, Angew. Chem. Int. Ed. 48 (2009) 7298-7332.

    6. [6]

      [6] J.V. Barth, G. Costantini, K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature 437 (2005) 671-679.

    7. [7]

      [7] Q.D. Zeng, C. Wang, Construction of tunable supramolecular networks studied by scanning tunneling microscopy, Sci. China Chem. 53 (2) (2010) 310-317.

    8. [8]

      [8] J.K. Gimzewski1, C. Joachim, Nanoscale science of single molecules using local probes, Science 283 (1999) 1683-1688.

    9. [9]

      [9] S. De Feyter, F.C. De Schryver, Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy, Chem. Soc. Rev. 32 (2003) 139-150.

    10. [10]

      [10] T. Yokoyama, S. Yokoyama, T. Kamikado, et al., Selective assembly on a surface of supramolecular aggregates with controlled size and shape, Nature 413 (2001) 619-621.

    11. [11]

      [11] M.V. Chumillas, J. Hieulle, T. Mallah, et al., Compact hydrogen-bonded selfassembly of Ni(Ⅱ)-salen derivative investigated using scanning tunneling microscopy, J. Phys. Chem. C 116 (2012) 23404-23407.

    12. [12]

      [12] R. Philipp, N. Markus, K. Angelika, Substrate templating upon self-assembly of hydrogen-bonded molecular networks on an insulating surface, Small 8 (2012) 2969-2977.

    13. [13]

      [13] X. Zhang, T. Chen, H.J. Yan, et al., Engineering of linear molecular nanostructures by a hydrogen-bond-mediated modular and flexible host-guest assembly, ACS Nano 4 (2010) 5685-5692.

    14. [14]

      [14] C. Thomas, L. Magali, Y.L. Wang, et al., Hydrogen and coordination bonding supramolecular structures of trimesic acid on Cu(110), J. Phys. Chem. A. 111 (2007) 12589-12603.

    15. [15]

      [15] K. Müllen, J.P. Rabe, Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work, Acc. Chem. Res. 41 (2008) 511-520.

    16. [16]

      [16] Y.H. Qiao, Q.D. Zeng, Z.Y. Tan, et al., Photo-induced organic nanowires from selfassembled monolayers, J. Vac. Sci. Technol. B 20 (2002) 2466-2469.

    17. [17]

      [17] A. Miura, S. De Feyter, M.M.S. Abdel-Mottaleb, et al., Light-and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures, Langmuir 19 (2003) 6474-6482.

    18. [18]

      [18] D. Bleger, A. Clesielki, P. Samori, S. Hecht, Photo-switching vertically oriented azobenzene self-assembled monolayers at the solid-liquid interface, Chem. Eur. J. 16 (2010) 14256-14260.

    19. [19]

      [19] A. Jinne, L. Yang, J. Liu, et al., Two-dimensional metallo-supramolecular polymerization: toward size-controlled multi-strand polymers, Am. Chem. Soc. 134 (2012) 18526-18529.

    20. [20]

      [20] A. Ciesielski, S. Lena, S. Masiero, et al., Dynamers at the solid-liquid interface, Angew. Chem. Int. Ed. 49 (2010) 1963-1966.

    21. [21]

      [21] M. Lackinger, M. Heckl, A STM perspective on covalent intermolecular coupling reactions on surfaces, J. Phys. D: Appl. Phys. 44 (2011) 464011 (14pp).

    22. [22]

      [22] K.Q. Zhao, P. Hu, B.Q. Wang, et al., Synthesis of mixed tail triphenylene discotic liquid crystals: molecular symmetry and oxygen-atom effect on the stabilization of columnar mesophases, Chin. J. Chem. 25 (2007) 375-381.

    23. [23]

      [23] Y.B. Li, K. Deng, X.K. Wu, et al., Molecular arrays formed in anisotropically rearranged supramolecular network with molecular substitutional asymmetry, J. Mater. Chem. 20 (2010) 9100-9103.

    24. [24]

      [24] R. Singh, A. Banerjee, E. Colacio, Enantiopure tetranuclear iron(Ⅲ) complexes using chiral reduced Schiff base ligands: synthesis, structure, spectroscopy, magnetic properties, and DFT studies, Inorg. Chem. 48 (2009) 4753-4762.

    25. [25]

      [25] Y.B. Li, K.Q. Zhao, Y.L. Yang, et al., Functionalization of two-component molecular networks: recognition of Fe3+, Nanoscale 4 (2012) 148-151.

    26. [26]

      [26] S. Griessl, M. Lackinger, M. Edelwirth, et al., Self-assembled two-dimensional molecular host-guest architectures from trimesic acid, Single Mol. 3 (2002) 25-31.

    27. [27]

      [27] Z. Ma, Y.Y. Wang, P. Wang, et al., Star-shaped oligofluorenes end-capped with carboxylic groups: syntheses and self-assembly at the liquid-solid interface, ACS Nano. 1 (2007) 160-167.

    28. [28]

      [28] M. Blunt, X. Lin, M.C. Gimenez-Lopez, et al., Directing two-dimensional molecular crystallization using guest templates, Chem. Commun. 20 (2008) 2304-2306.

    29. [29]

      [29] A. Dmitriev, N. Lin, J. Weckesser, et al., Supramolecular assemblies of trimesic acid on a Cu(1 0 0) Surface, J. Phys. Chem. B 106 (2002) 6907-6912.

    30. [30]

      [30] S. Furukawa, H. Uji-i, K. Tahara, et al., Molecular geometry directed Kagomé and honeycomb networks: toward two-dimensional crystal engineering, J. Am. Chem. Soc. 128 (2006) 3502-3503.

    31. [31]

      [31] H. Zhou, H. Dang, J.H. Yi, et al., Frustrated 2D molecular crystallization, J. Am. Chem. Soc. 129 (2007) 13774-13775.

    32. [32]

      [32] H.W. Kroto, J.R. Heath, S.C. OIBrien, et al., C60: Buckminsterfullerene, Nature 318 (1985) 162-163.

    33. [33]

      [33] M. Li, K. Deng, S.B. Lei, et al., Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface, Angew. Chem. Int. Ed. 47 (2008) 6717-6721.

    34. [34]

      [34] F.H. Henrich, R.H. Michel, A. Fischer, et al., Fullerenes, Angew. Chem. 108 (1996) 1839-1841.

    35. [35]

      [35] J.M. Campanera, C. Bo, M.M. Olmstead, et al., Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 asdeterminedbydensity functional calculationsand reexamination of the crystal structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHC13), J. Phys. Chem. A. 106 (2002) 12356-12364.

    36. [36]

      [36] N. Henningsen, R. Rurali, K.J. Franke, et al., Trans to cis isomerization of an azobenzene derivative on a Cu (1 0 0) surface, Appl. Phys. A. 93 (2008) 241-246.

    37. [37]

      [37] A.S. Kumar, T. Ye, T. Takami, et al., Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments, Nano Lett. 8 (6) (2008) 1644-1648.

    38. [38]

      [38] J. Lu, et al., Template-induced inclusion structures with copper (Ⅱ) phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks, J. Phys. Chem. B 108 (2004) 5161-5165.

    39. [39]

      [39] R. Tamaoki, K. Ogata, K. Koseki, et al., [2.2] (4,40) Azobenzenophane synthesis, structure, and cis-trans isomerization, Tetrahedron 46 (1990) 5931-5942.

    40. [40]

      [40] S. Shinkai, T. Minami, Y. Kasano, et al., Photoresponsive crown ethers. 8. Azobenzenophane-type switched-on crown ethers which exhibit an all-ornothing change in ion-binding ability, J. Am. Chem. Soc. 105 (1983) 1851-1856.

    41. [41]

      [41] Y.T. Shen, L. Guan, X.Y. Zhu, et al., Submolecular observation of photosensitive macrocycles and their isomerization effects on host-guest network, J. Am. Chem. Soc. 131 (17) (2009) 6174-6180.

    42. [42]

      [42] X.M. Zhang, S. Wang, Y.T. Shen, et al., Two-dimensional networks of an azobenzene derivative: bi-pyridine mediation and photo regulation, Nanoscale 4 (2012) 5039-5042.

  • 加载中
    1. [1]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    5. [5]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    6. [6]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    7. [7]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    8. [8]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    11. [11]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    12. [12]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    13. [13]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    14. [14]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    15. [15]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    16. [16]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    17. [17]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    18. [18]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    19. [19]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    20. [20]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

Metrics
  • PDF Downloads(0)
  • Abstract views(667)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return