Citation: Xiang Gao, Jian-Gang Liu, Yue Sun, Ru-Bo Xing, Yan-Chun Han. Effects of aggregation of poly(3-hexylthiophene)in solution on uniaxial alignment of nanofibers during zone casting[J]. Chinese Chemical Letters, ;2013, 24(01): 23-27. shu

Effects of aggregation of poly(3-hexylthiophene)in solution on uniaxial alignment of nanofibers during zone casting

  • Corresponding author: Yan-Chun Han, 
  • Received Date: 25 October 2012
    Available Online: 19 December 2012

  • We report on the effects of aggregation of P3HT with ordered conformation in solution on improving the uniaxial alignment of the P3HT nanofibers by zone casting.Two approaches were employed to change the aggregation of P3HT:P3HT blending with coil insulating polymer and ultrasonic oscillating.The insulator polymer(i.e.PS)which has good solubility in the solution would disturb the aggregation of P3HT to prevent the chains entanglement.The ultrasonic oscillation can further improve the P3HT aggregation with ordered conformation in the solution.As a result,the P3HT nanofibers in the film grew much orientedly by zone casting the ultrasonic oscillating P3HT/PS polymer blends solution than the same solvent P3HT solution without ultrasonic oscillating and blending.The P3HTπ-πstacking direction is parallel to the alignment direction of the nanofibers.Meanwhile,the P3HT/PS blend ratio and PS molecular weight have influence on the uniaxial alignment of P3HT nanofibers.Only P3HT/PS is 1:1, the P3HT nanofibers oriented well.The low molecular weight PS can make the P3HT nanofibers orient better than that of the high molecular weight.
  • 加载中
    1. [1]

      [1] M.M.S.Abdel-Mottaleb,G.Götz,P.Kilickiran,et al.,Influence of halogen sub-stituents on the self-assembly of oligothiophenes-A combined STM and theoreti-cal approach,Langmuir 22(2006)1443-1448.

    2. [2]

      [2] Z.Bao,A.Dodabalapur,A.J.Lovinger,Soluble and processable regioregular poly(3-hexylthiophene)for thin film field-effect transistor applications with high mo-bility,Appl.Phys.Lett.69(1996)4108-4110.

    3. [3]

      [3] S.Joshi,S.Grigorian,U.Pietsch,X-ray structural and crystallinity studies of low and high molecular weight poly(3-hexylthiophene),Phys.Stat.Solidi A 205 (2008)488-496.

    4. [4]

      [4] K.Yoshino,P.Love,M.Onoda,et al.,Dependence of absorption spectra and solubility of poly(3-alkylthiophene)on molecular structure of solvent,Jpn.J. Appl.Phys.27(1988)L2388-L2391.

    5. [5]

      [5] S.D.D.V.Rughooputh,S.Hotta,A.J.Heeger,et al.,Chromism of soluble polythie-nylenes,Polym.Sci.Polym.Phys.25(1987)1071-1078.

    6. [6]

      [6] E.Mena-Osteritz,A.Meyer,B.M.W.Langeveld-Voss,et al.,Two-dimensional crystals of poly(3-alkylthiophene)s:direct visualization of polymer folds in sub-molecular resolution,Angew.Chem.Int.Ed.39(2000)2680-2684.

    7. [7]

      [7] L.G.Li,G.H.Lu,X.N.Yang,Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution,J.Mater.Chem.18(2008)1984-1990.

    8. [8]

      [8] C.Yang,F.P.Orfino,S.Holdcroft,A phenomenological model for predicting thermochromism of regioregular and nonregioregular poly(3-alkylthiophenes), Macromolecules 29(1996)6510-6517.

    9. [9]

      [9] N.Kiriy,E.Jahne,H.J.Adler,et al.,One-dimensional aggregation of regioregular polyalkylthiophenes,Nano Lett.3(2003)707-712.

    10. [10]

      [10] S.Berson,R.De Bettignies,S.Bailly,et al.,Poly(3-hexylthiophene)fibers for photovoltaic applications,Adv.Funct.Mater.17(2007)1377-1384.

    11. [11]

      [11] J.A.Merlo,C.D.Frisbie,Field effect transport and trapping in regioregular poly-thiophene nanofibers,J.Phys.Chem.B 108(2004)19169-19179.

    12. [12]

      [12] S.Lee,G.D.Moon,U.Jeong,Continuous production of uniform poly(3-hexylthio-phene)(P3HT)nanofibers by electrospinning and their electrical properties,J. Mater.Chem.19(2009)743-748.

    13. [13]

      [13] K.Zhao,L.J.Xue,J.G.Liu,et al.,A new method to improve poly(3-hexyl thiophene)(P3HT)crystalline behavior:decreasing chains entanglement to pro-mote order-disorder transformation in solution,Langmuir 26(2010) 471-477.

    14. [14]

      [14] W.Pisula,A.Menon,M.Stepputat,et al.,A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzoeor-onene,Adv.Mater.17(2005)684-689.

    15. [15]

      [15] X.Gao,R.Xing,Y.Han,Uniaxial alignment of poly(3-hexylthiophene)nanofibers by zone-casting technique(in contribution).

    16. [16]

      [16] M.Hamaguchi,K.Yoshino,Polarized electroluminescence from rubbing-aligned poly(2,5-dinoyloxy-1,4-phenylenevinylene)films,Appl.Phys.Lett.67(1995) 3381-3383.

    17. [17]

      [17] S.Nagamatsu,W.Takashima,K.Kaneto,et al.,Backbone arrangement in "friction-transferred" regioregular poly(3-alkylthiophene)s,Macromolecules 36(14) (2003)5252-5257.

  • 加载中
    1. [1]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    2. [2]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    3. [3]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    4. [4]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    5. [5]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    6. [6]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    7. [7]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    10. [10]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    11. [11]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    12. [12]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    13. [13]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    14. [14]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    17. [17]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    18. [18]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    19. [19]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    20. [20]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

Metrics
  • PDF Downloads(0)
  • Abstract views(782)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return