Citation:
Xi Wang, Yi-Jun Yang, Ying Ma, Jian-Nian Yao. Controlled synthesis of multi-shelled transition metal oxide hollow structure through one-pot solution route[J]. Chinese Chemical Letters,
;2013, 24(01): 1-6.
-
As one type of promising candidates for environmental and energy-related systems,multi-shelled transition metal oxide hollow structures(MS-TMOHSs)have drawn great scientific and technical interest in the past few years.This article highlights recent advances in one-pot solution synthesis of MS-TMOHSs.We begin it with an overview of synthetic strategies that have been exploited to achieve these peculiar structures.We then focus on one-pot solution approaches in the following four sections:i)soft templates directed growth;ii)Ostwald ripening;iii)controlled etching;and iv)gas bubble assisted growth.After giving a brief discussion on the unique properties and applications of these multi-shelled hollow structures,we conclude this review with the general challenges and the potential future directions of this exciting area of research.
-
-
-
[1]
[1] X.W.Lou,L.A.Archer,Z.Yang,Hollow micro-/nanostructures:synthesis and applications,Adv.Mater.20(2008)3987-4019.
-
[2]
[2] J.Liu,F.Liu,J.Wu,et al.,Recent developments in the chemical synthesis of inorganic porous capsules,J.Mater.Chem.19(2009)6073-6084.
-
[3]
[3] G.Réthoré,A.Pandit,Use of templates to fabricate nanoscale spherical structures for defined architectural control,Small 6(2010)488-498.
-
[4]
[4] J.Hu,M.Chen,X.Fang,et al.,Fabrication and application of inorganic hollow spheres,Chem.Soc.Rev.40(2011)5472-5491.
-
[5]
[5] J.Liu,D.Xue,Hollow nanostructured anode materials for Li-ion batteries,Nano-scale Res.Lett.5(2010)1525-1534.
-
[6]
[6] X.Wang,W.Tian,T.Zhai,et al.,Cobalt(Ⅱ,Ⅲ)oxide hollow structures:fabrication, properties and applications,J.Mater.Chem.22(2012)23310-23326.
-
[7]
[7] X.Lai,J.E.Halpert,D.Wang,Recent advances in micro-/nano-structured hollow spheres for energy applications:from simple to complex systems,Energy Environ. Sci.5(2012)5604-5618.
-
[8]
[8] Y.Zhao,L.Jiang,Hollow micro/nanomaterials with multilevel interior structures, Adv.Mater.21(2009)3621-3638.
-
[9]
[9] H.Zeng,Synthesis and self-assembly of complex hollow materials,J.Mater.Chem. 21(2011)7511-7526.
-
[10]
[10] M.Yang,J.Ma,C.L.Zhang,et al.,General synthetic route toward functional hollow spheres with double-shelled structures,Angew.Chem.Int.Ed.44(2005) 6727-6730.
-
[11]
[11] M.Yang,J.Ma,Z.Niu,et al.,Synthesis of spheres with complex structures using hollow latex cages as templates,Adv.Funct.Mater.15(2005)1523-1528.
-
[12]
[12] X.W.Lou,C.Yuan,L.A.Archer,Double-walled SnO2 nano-cocoons with movable magnetic cores,Adv.Mater.19(2007)3328-3332.
-
[13]
[13] X.W.Lou,C.Yuan,L.A.Archer,Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls:cavity size tuning and functionalization,Small 3 (2007)261-265.
-
[14]
[14] J.Qiu,F.Zhuge,X.Li,et al.,Coaxial multi-shelled TiO2 nanotube arrays for dye sensitized solar cells,J.Mater.Chem.22(2012)3549-3554.
-
[15]
[15] H.X.Yang,J.F.Qian,Z.X.Chen,et al.,Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrother-mal environment,J.Phys.Chem.C 111(2007)14067-14071.
-
[16]
[16] C.Z.Wu,X.D.Zhang,B.Ning,et al.,Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy,Inorg.Chem.48(2009) 6044-6054.
-
[17]
[17] Y.Zeng,X.Wang,H.Wang,et al.,Multi-shelled titania hollow spheres fabricated by a hard template strategy:enhanced photocatalytic activity,Chem.Commun. 46(2010)4312-4314.
-
[18]
[18] J.Guan,F.Mou,Z.Sun,et al.,Preparation of hollow spheres with controllable interior structures by heterogeneous contraction,Chem.Commun.46(2010) 6605-6607.
-
[19]
[19] F.Z.Mou,J.G.Guan,W.D.Shi,et al.,Oriented contraction:a facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube-in-tube nanostructures,Langmuir 26(2010)15580-15585.
-
[20]
[20] W.Cho,Y.H.Lee,H.J.Lee,et al.,Multi ball-in-ball hybrid metal oxides,Adv.Mater. 23(2011)1720-1723.
-
[21]
[21] X.Lai,J.Li,B.A.Korgel,et al.,General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres,Angew.Chem.Int.Ed.50(2011) 2738-2741.
-
[22]
[22] X.Wu,G.Q.Lu,L.Wang,Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application,Energy Envi-ron.Sci.4(2011)3565-3572.
-
[23]
[23] Y.L.Ding,X.B.Zhao,J.Xie,et al.,Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries,J.Mater.Chem.21 (2011)9475-9479.
-
[24]
[24] L.Wang,Z.Lou,T.Fei,et al.,Zinc oxide core-shell hollow microspheres with multi-shelled architecture for gas sensor applications,J.Mater.Chem.21(2011) 19331-19336.
-
[25]
[25] L.Zhou,D.Zhao,X.W.Lou,Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries,Adv.Mater.24(2012)745-748.
-
[26]
[26] Z.Dong,X.Lai,J.E.Halpert,et al.,Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency,Adv.Mater.24 (2012)1046-1049.
-
[27]
[27] G.Zhang,L.Yu,H.B.Wu,et al.,Formation of ZoMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries,Adv.Mater. 24(2012)4609-4613.
-
[28]
[28] H.L.Xu,W.Z.Wang,Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall,Angew.Chem.Int.Ed.46(2007)1489-1492.
-
[29]
[29] H.L.Xu,W.Z.Wang,L.Zhou,A growth model of single crystalline hollow spheres: oriented attachment of Cu2O nanoparticles to the single crystalline shell wall, Cryst.Growth Des.8(2008)3486-3489.
-
[30]
[30] W.Z.Wang,Y.Tu,P.C.Zhang,et al.,Surfactant-assisted synthesis of double-wall Cu2O hollow spheres,CrystEngComm1(2011)1838-1842.
-
[31]
[31] X.Wang,X.Wu,Y.Guo,et al.,Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres,Adv.Funct.Mater.20(2010) 1680-1686.
-
[32]
[32] X.Wang,Y.Zhong,T.Zhai,et al.,Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution:synthesis,magnetic properties and their application in water treatment,J.Mater.Chem.21(2011)17680-17687.
-
[33]
[33] W.Ostwald,On the assumed isomerism of red and yellow mercury oxide and the surface-tension of solid bodies,Z.Phys.Chem.34(1900)495-503.
-
[34]
[34] J.Liu,H.Xia,D.Xue,et al.,Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries,J.Am. Chem.Soc.131(2009)12086-12087.
-
[35]
[35] J.J.Ma,K.Qian,W.X.Huang,et al.,Facile one-step synthesis of double-shelled CeO2 hollow spheres and their optical and catalytic properties,Bull.Chem.Soc. Jpn.83(2010)1455-1461.
-
[36]
[36] L.Han,R.Liu,C.Li,et al.,Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid,J. Mater.Chem.22(2012)17079-17085.
-
[37]
[37] P.Hu,N.Han,X.Zhang,et al.,Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor,J.Mater.Chem.21 (2011)14277-14284.
-
[38]
[38] J.Wu,D.Xue,Hierarchical integration of ZnO nanocrystals into multishelled superstructures,Nanosci.Nanotechnol.Lett.3(2011)371-377.
-
[39]
[39] Y.Xiong,B.Wiley,J.Chen,et al.,Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties,Angew.Chem. Int.Ed.44(2005)7913-7917.
-
[40]
[40] D.Kim,J.Park,K.Ået al.,Synthesis of hollow iron nanoframes,J.Am.Chem.Soc. 129(2007)5812-5813.
-
[41]
[41] X.Wang,H.Fu,A.Peng,et al.,One-pot solution synthesis of cubic cobalt nanoskeletons,Adv.Mater.21(2009)1636-1640.
-
[42]
[42] C.J.Jia,L.D.Sun,Z.G.Yan,et al.,Iron oxide tube-in-tube nanostructures,J.Phys. Chem.C 111(2007)13022-13027.
-
[43]
[43] Z.C.Wu,M.Zhang,K.Yu,et al.,Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture,Chem.Eur.J.14(2008)5346-5352.
-
[44]
[44] X.Wang,M.Liao,Y.Zhong,et al.,ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors,Adv.Mater. 24(2012)3421-3425.
-
[45]
[45] J.Qian,P.Liu,Y.Xiao,et al.,TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells,Adv.Mater.21(2009)3663-3667.
-
[46]
[46] J.H.Ju,K.S.Ryu,Synthesis and performance of CuO with C complex hollow structure as anode material for lithium secondary batteries,J.Electrochem. Soc.158(2011)A814-A817.
-
[47]
[47] H.Zhang,Q.Zhu,Y.Zhang,et al.,One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties,Adv.Funct.Mater.17(2007)2766-2771.
-
[48]
[48] J.Cao,Y.C.Zhu,L.Shi,et al.,Double-shelled Mn2O3 hollow spheres and their application in water treatment,Eur.J.Inorg.Chem.26(2010)1172-1176.
-
[1]
-
-
-
[1]
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
-
[2]
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
-
[3]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[4]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[5]
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
-
[6]
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
-
[7]
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
-
[8]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[9]
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
-
[10]
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
-
[11]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[12]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[13]
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
-
[14]
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
-
[15]
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
-
[16]
Ning Zhang , Mengjie Qin , Jiawen Zhu , Xuejing Lou , Xiao Tian , Wende Ma , Youmei Wang , Minghua Lu , Zongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177
-
[17]
Xiaomeng Hu , Jie Yu , Lijie Sun , Linfeng Zhang , Wei Zhou , Dongpeng Yan , Xinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466
-
[18]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[19]
Tao Zhou , Jing Zhou , Yunyun Liu , Jie-Ping Wan , Fen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683
-
[20]
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(701)
- HTML views(0)