Citation: CHEN Yan-rong, LI Hao-jie, YANG Zhong-qing, FAN Hu. Structure of CuO/Al2O3-MgO catalyst modified by ultrasound assisted dispersion and its catalytic performance in the combustion of lean methane[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(1): 122-128. shu

Structure of CuO/Al2O3-MgO catalyst modified by ultrasound assisted dispersion and its catalytic performance in the combustion of lean methane

  • Corresponding author: CHEN Yan-rong, 
  • Received Date: 9 June 2014
    Available Online: 5 September 2014

    Fund Project: 国家自然科学基金(51206200) (51206200) 中央高校基本科研业务经费 (CDJZR12140034). (CDJZR12140034)

  • CuO/Al2O3-MgO catalyst was prepared by ultrasound assisted dispersion and used in the catalytic combustion of lean methane. The CuO/Al2O3-MgO catalyst was characterized by SEM, XRD, XPS, and H2-TPR and the effect of ultrasonic modification on the structure and catalytic performance was investigated. The results showed that the activity of the CuO/Al2O3-MgO catalyst prepared by ultrasonic treatment is much higher than that prepared by the conventional impregnation method. The catalytic activity of CuO/Al2O3-MgO is related to both the ultrasonic time and power; the optimum ultrasonic time and power are 20 min and 150 W, respectively. Compared with the conventional impregnation, the ultrasonic modification is propitious to get a catalyst with higher surface area and pore volume, smaller particles, and higher dispersion of active Cu species. Moreover, the ultrasonic modification may promote the formation of Cu+ on the catalyst surface and improve the low temperature reducibility. All these can depress the activation energy and enhance the activity of the CuO/Al2O3-MgO catalyst in methane oxidation.
  • 加载中
    1. [1]

      [1] 张力, 张俊广, 杨仲卿, 唐强. 超低浓度甲烷在 Cu/γ-Al2O3催化颗粒流化床中的燃烧特性[J]. 燃料化学学报, 2012, 40(7): 886-891.(ZHANG Li, ZHANG Jun-guang, YANG Zhong-qing, TANG Qiang. Combustion characteristics of ultra-low content methane in a fluidized bed reactor with Cu/γ-Al2O3 as catalytic particles[J]. J Fuel Chem Technol, 2012, 40(7): 886-891.)

    2. [2]

      [2] HU J B, YU C L, BI Y D. Preparation and characterization of Ni/CeO2-SiO2 catalysts andtheirperformance in catalytic partial oxidation of methane to syngas[J]. Chin J Catal, 2014, 35(1): 8-20.

    3. [3]

      [3] 王越, 张佳瑾, 李敏, 李建伟. 铜锰负载型堇青石整体催化剂表面低浓度甲烷催化燃烧本征动力学研究[J]. 北京化工大学学报, 2011, 38(6): 1-4.(WANG Yue, ZHANG Jia-jin, LI Min, LI Jian-wei. Intrinsic kinetics of lean methane catalytic combustion over a Cu-Mn/cordierite catalyst[J]. J Beijing Univ Chem Technol, 2011, 38(6):1-4.)

    4. [4]

      [4] YANG Z,GRACE J R. Combustion of low-concentration coal bed methane in a fluidized bed reactor[J]. Energy Fuels, 2011, 25(3): 975-980.

    5. [5]

      [5] 张佳瑾, 李建伟, 朱吉钦, 王越, 陈标华. 助剂对 Cu-Mn 复合氧化物整体式催化剂催化低浓度甲烷燃烧反应性能的影响[J]. 催化学报, 2011, 32(8): 1380-1386.(ZHANG Jia-jin, LI Jian-wei, ZHU Ji-qin, WANG Yue, CHEN Biao-hua. Effect of promoter on the performance of Cu-Mn complex oxide monolithic catalysts for lean methane catalytic combustion[J]. Chin J Catal, 2011, 32(8): 1380-1386.)

    6. [6]

      [6] 郭章龙, 黄丽琼, 储伟. 助剂对NiMgAl催化剂的结构和甲烷二氧化碳重整反应性能的影响[J]. 物理化学学报, 2014, 30(4): 723-728.(GUO Zhang-long, HUANG Li-qiong, CHU Wei. Effects of promoter on NiMgAl catalyst structure and performance for carbon dioxide reforming of methane[J]. Acta Phys-Chim Sin, 2014, 30(4): 723-728.)

    7. [7]

      [7] YUAN X Z, CHEN S Y, CHEN H, ZHANG Y C. Effect of Ce addition on Cr/γ-Al2O3 catalysts for methane catalytic combustion[J]. Catal Commun, 2013, 35(5): 36-39.

    8. [8]

      [8] GUO W L, LI H L, JI G L, ZHANG G Y. Ultrasound-assisted production of biodiesel from soybean oil using Bronsted acidic ionic liquid as catalyst[J]. Bioresour Technol, 2012, 125(12): 332-334.

    9. [9]

      [9] BYEON J H, KIM Y W. Ultrasound-assisted copper deposition on a polymer membrane and application for methanol steam reforming[J]. Ultrason Sonochem, 2013, 20(1): 472-477.

    10. [10]

      [10] ABDOLLAHIFAR M, HAGHIGHI M, BABALUO A A. Syngas production via dry reforming of methane over Ni/Al2O3-MgO nanocatalyst synthesized using ultrasound energy[J]. J Ind Eng Chem, 2014, 20(4): 1845-1851.

    11. [11]

      [11] ALLAHYARI S, HAGHIGHI M, EBADI A, HOSSEINZADEH S. Ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5: Effect of precursor and irradiation power on nanocatalyst properties and catalytic performance for direct syngas to DME[J]. Ultrason Sonochem, 2014, 21(2):663-673.

    12. [12]

      [12] KHOSHBIN R, HAGHIGHI M. Direct syngas to DME as a clean fuel: The beneficial use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst[J]. Chem Eng Res Des, 2013, 91(6): 1111-1122.

    13. [13]

      [13] 邱业君, 陈吉祥, 张继炎. MgO助剂对甲烷部分氧化Ni /Al2O3催化剂结构和性能的影响[J]. 燃料化学学报, 2006, 34(4): 450-455.(QIU Ye-jun, CHEN Ji-xiang, ZHANG Ji-yan. Effects of MgO promoter on properties of Ni/Al2O3 catalysts for partial oxidation of methane to syngas[J]. J Fuel Chem Technol, 2006, 34(4): 450-455.)

    14. [14]

      [14] 刘静, 李春梅, 霍晓敏, 石雷, 孙琪. 吲哚的直接气相合成: MgO助剂对Cu/SiO2催化剂性能的影响[J].催化学报, 2008, 29(2): 159-162.(LIU Jing, LI Chun-mei, HUO Xiao-min, SHI Lei, SUN Qi. Direct vapor-phase synthesis of indole: Effect of MgO on the performance of Cu/SiO2 catalyst[J]. Chin J Catal, 2008, 29(2): 159-162.)

    15. [15]

      [15] 张存, 马春艳, 刘晓勤. 超声促进浸渍法制备WO3/ZrO2固体超强酸催化剂[J]. 四川大学学报, 2009, 41(6): 84-88.(ZHANG Cun, MA Chun-yan, LIU Xiao-qin. Preparation of WO3/ZrO2 solid superacid catalysts by ultrasonic impregnation[J]. J Sichuan Univ, 2009, 41(6): 84-88.)

    16. [16]

      [16] MOSADDEGH E. Ultrasonic-assisted preparation of nano eggshell powder: A novel catalyst in green and high efficient synthesis of 2-aminochromenes[J]. Ultrason Sonochem, 2013, 20(6):1436-1441.

    17. [17]

      [17] LUO J J, XUA H, LIU Y F. A facile approach for the preparation of biomorphic CuO-ZrO2 catalyst for catalytic combustion of methane[J]. Appl Catal A: Gen, 2012, 424(7): 121-129.

    18. [18]

      [18] 陈婕, 胡瑞生, 胡佳楠, 卢天竹. 新型La2CuMnO6和LaMnO3催化剂的甲烷燃烧催化性能比较[J]. 高等学校化学学报, 2011, 32(10): 2396-2401.(CHEN Jie, HU Rui-sheng, HU Jia-nan, LU Tian-zu. Catalytic performance comparison of the novel catalyst La2CuMnO6 and LaMnO3 for methane combustion[J]. Chem J Chin Univ, 2011, 32(10): 2396-2401.)

    19. [19]

      [19] BELESSI V C, LADAVOS A K, POMONIS P J. Methane combustion on La-Sr-Ce-Fe-O mixed oxides: Bifunctional synergistic action of SrFeO3-x and CeOx phases[J]. Appl Catal B: Environ, 2001, 31(3): 183-187.

    20. [20]

      [20] ABBASI R, WU L, WANKE S E. Kinetics of methane combustion over Pt and Pt-Pd catalysts[J]. Chem Eng Res Des, 2012, 90(11): 1930-1942.

  • 加载中
    1. [1]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    12. [12]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    13. [13]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    14. [14]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(0)
  • Abstract views(550)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return