Citation: SONG Hua, XU Xiao-wei, DAI Min, SONG Hua-lin. Effect of preparation method and support type on hydrodesulfurization performance of Ni2P/TiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(11): 1400-1408. shu

Effect of preparation method and support type on hydrodesulfurization performance of Ni2P/TiO2 catalyst

  • Corresponding author: SONG Hua,  SONG Hua-lin, 
  • Received Date: 26 May 2014
    Available Online: 16 July 2014

    Fund Project: 国家自然科学基金(21276048) (21276048) 黑龙江省自然科学基金(ZD201201) (ZD201201) 黑龙江省教育厅项目(12541060). (12541060)

  • Nickel phosphide catalysts, supported on whiskers and anatase TiO2, were prepared by temperature programmed reduction method and solvothermal method, respectively. The catalysts were characterized by X-ray diffraction (XRD), N2-adsorption specific surface area measurements (BET), N2 adsorption-desorption,CO adsorption, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (TEM). The effects of preparation method and support type on catalyst activity for dibenzothiophene (DBT) hydrodesulfurization (HDS) were studied. The result showed that the structures of the TiO2 support remained unchanged, and the formation of TiPO4 was suppressed in solvothermal method process, contributing to higher catalytic activity of Ni2P/TiO2 catalysts for HDS than the catalysts obtained by conventional TPR method. Compared with the catalysts supported on anatase TiO2, the catalysts supported on whiskers TiO2 displayed excellent surface properties, producing more Ni2P crystal particles with smaller size and better dispersion, and therefore possessed higher HDS activity. The HDS activity of the catalyst supported on whiskers TiO2 and made by solvothermal method was found to be the best one among the tested catalysts. The conversion of dibenzothiophene HDS was 98.2% under the selected reaction conditions of 340 ℃, 3.0 MPa, H2/oil ratio of 500 (volume ratio), and WHSV of 2.0 h-1.
  • 加载中
    1. [1]

      [1] SONG H, DAI M, SONG H L, WAN X, XU X W. A novel synthesis of Ni2P/MCM-41 catalysts by reducing a precursorof ammonium hypophosphite and nickel chloride at low temperature[J]. Appl Catal A: Gen, 2013, 462-463: 247-255.

    2. [2]

      [2] SONG H, DAI M, SONG H L, WAN X, XU X W, ZHANG C Y, WANG H Y. Synthesis of a Ni2P catalyst supported on anatase-TiO2 whiskers with high hydrodesulfurization activity, based on triphenylphosphine[J]. Catal Commun, 2014, 43: 151-154.

    3. [3]

      [3] 齐和日玛, 赵晓光, 张韫宏, 袁蕙, 徐广通. CO吸附原位红外光谱结合分子模拟计算研究FCC汽油加氢脱硫催化剂的选择性[J]. 高等学校化学学报, 2012, 33(2): 383-388.(QIHE Ri-ma, ZHAO Xiao-guang, ZHANG Yun-hong, YUAN Hui, XU Guang-tong. Investigation of selectivity over HDS catalysts by in situ IR spectra of absorbed CO and molecular simulation calculation[J]. Chemical Journal of Chinese Universities, 2012, 33(2): 383-388.)

    4. [4]

      [4] OYAMA S T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides[J]. J Catal, 2003, 216(1/2): 343-352.

    5. [5]

      [5] TANMOY D, SUDIPTA D, ABHIJIT M. Study of electronic structure and elastic properties of transition metal and actinide carbides[J]. Physica B, 2005, 367(1/4): 6-18.

    6. [6]

      [6] FURIMSKY E. Metal carbides and nitrides as potential catalysts for hydroprocessing[J]. Appl Catal A: Gen, 2003, 240(1/2): 1-28.

    7. [7]

      [7] 任君, 王建国, 李俊汾, 李永旺. 磷化镍晶体结构的密度泛函理论研究[J]. 燃料化学学报, 2007, 35(4): 458-464.(REN Jun, WANG Jian-guo, LI Jun-fen, LI Yong-wang. Density functional theory study on crystal nickel phosphides[J]. Journal of Fuel Chemistry and Technology, 2007, 35(4): 458-464.)

    8. [8]

      [8] STINNER C, TANG Z, HAOUAS M, WEBER T, PRINS R. Preparation and 31P NMR characterization of nickel phosphides on silica[J]. J Catal, 2002, 208(2): 456-466.

    9. [9]

      [9] FUKS D, VINGURT D, LANDAU M V, HERSKOWITZ M. Density functional theory study of sulfur adsorption at the (001) surface of metal-rich nickel phosphides: Effect of the Ni/P ratio[J]. J Phys Chem C, 2010, 114(31): 13313-13321.

    10. [10]

      [10] DELSANTE S, SCHMETTERE C, IPSER H, BORZONE G. Thermodynamic investigation of the Ni-rich side of the Ni-P system[J]. J Chem Eng Data, 2010, 55(9): 3468-3473.

    11. [11]

      [11] 宋华, 代敏, 宋华林. Ni2P加氢脱硫催化剂[J]. 化学进展, 2012, 24(5): 43-47.(SONG Hua, DAI Min, SONG Hua-lin. Ni2P Catalyst for Hydrodesulfurization[J]. Progress in Chemistry, 2012, 24(5): 43-47.)

    12. [12]

      [12] GUAN J, WANG Y, QIN M L, YANG Y, LI X, WANG A J. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma[J]. J Solid State Chem, 2009, 182(6): 1550-1555.

    13. [13]

      [13] SHU Y Y, OYAMA S T. Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphides[J]. Carbon, 2005, 43(7): 1517-1532.

    14. [14]

      [14] WANG X Q, CLARK P, OYAMA S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides[J]. J Catal, 2002, 208(2): 321-331.

    15. [15]

      [15] LEE Y K, SHU Y Y, OYAMA S T. Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4,6-DMDBT[J]. Appl Catal A: Gen, 2007, 322: 191-204.

    16. [16]

      [16] WANG A J, RUAN L F, TEND Y, LI X, LU M H, REN J, WANG Y, HU Y K. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts[J]. J Catal, 2005, 229(2): 314-321.

    17. [17]

      [17] CHEN Y Z, SHE H D, LUO X H, YUE G H, PENG D L. Solution-phase synthesis of nickel phosphide single-crystalline nanowires[J]. J Cryst Growth, 2009, 311(4): 1229-1233.

    18. [18]

      [18] SOPHIE C, CEDRIC B, LIONEL N, CLEMENT S, PASCAL L F, NICOLAS M. Controlled design of size-tunable monodisperse nickel nanoparticles[J]. Chem Mater, 2010, 22(4): 1340-1349.

    19. [19]

      [19] CHO K S, SEO H R, LEE Y K. A new synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization[J]. Catal Commun, 2011, 12(6): 470-474.

    20. [20]

      [20] SEO H R, CHO K S, LEE Y K. Formation mechanisms of Ni2P nanocrystals using XANES and EXAFS spectroscopy[J]. Mater Sci Eng: B, 2011, 176(2): 132-140.

    21. [21]

      [21] 宋华, 李锋, 代敏, 陈彦广, 牛瑞霞, 张梅. 一种常压下溶剂热法制备负载型油品加氢脱硫催化剂的方法: 中国, 102836739A[P]. 2012-12-26.(SONG Hua, LI Feng, DAI Min, CHEN Yan-guang, NIU Ri-xia, ZHANG Mei. A method solvothermal method preparing supported hydrodesulfurization catalyst under normal pressure: CN, 102836739A[P]. 2012-12-26.)

    22. [22]

      [22] SONG H, WANG J, WANG Z D, SONG H L, LI F, JIN Z S. Effect of titanium content on dibenzothiophene HDS performance over Ni2P/Ti-MCM-41 catalyst[J]. J Catal, 2014, 311: 257-265.

    23. [23]

      [23] LU X, SUN Z, WANG A, YANG X, WANG Y. Effect of TiO2 on the hydrodesulfurization performance of bulk Ni2P[J]. Appl Catal A: Gen, 2012, 417-418: 19-25.

    24. [24]

      [24] LI X, ZHANG Y, WANG A, WANG Y, HU Y. Influence of TiO2 and CeO2 on the hydrogenation activity of bulk Ni2P[J]. Catal Commun, 2010, 11(14): 1129-1132.

    25. [25]

      [25] PEREGO C, REVEL R, DURUPTHY O, CASSAIGNON S, JOLIVET J P. Thermal stability of TiO2-anatase: Impact of nanoparticles morphology on kinetic phase transformation[J]. Solid State Sci, 2010, 12(6): 989-995.

    26. [26]

      [26] 沈晶晶, 刘畅, 朱育丹, 李伟, 冯新, 陆小华. 介孔TiO2的水热法制备及其光催化性能[J]. 物理化学学报, 2009, 25(5): 1013-1018. (SHEN Jing-jing, LIU Chang, ZHU Yu-dan, LI Wei, FENG Xin, LU Xiao-hua. Photocatalytic properties of mesoporous TiO2 prepared by hydrothermal method[J]. Acta Physico-Chimica Sinica, 2009, 25(5): 1013-1018.)

    27. [27]

      [27] 姜黎明. 有机分子模板法合成二氧化钛及其光催化性能[J]. 哈尔滨商业大学学报(自然科学版), 2011, 27(2): 238-240. (JIANG Li-ming. Synthesis and photocatalysis of TiO2 powder by employing organic molecular as template[J]. Journal of Harbin University of Commerce(Natural Sciences Edition), 2011, 27(2): 238-240.)

    28. [28]

      [28] OYAMA S T, WANG X, LEE Y, BANDO K, REQUEJO F G. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques[J]. J Catal, 2002, 210(1): 207-217.

    29. [29]

      [29] LAYMAN K A, BUSSELL M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts[J]. J Phys Chem B, 2004, 108(30): 10930-10941.

    30. [30]

      [30] 宋华, 郭云涛, 李锋, 于洪坤. Ni2P/TiO2-Al2O3催化剂的制备及其加氢脱硫、脱氮性能[J]. 物理化学学报, 2010, 26(9): 2461-2467.(SONG Hua, GUO Yun-tao, LI Feng, YU Hong-kun. Preparation, hydrodesulfurization and hydrodenitrogenation performance of a Ni2P/TiO2-Al2O3 catalyst[J]. Acta Physico-Chimica Sinica, 2010, 26(9): 2461-2467.)

    31. [31]

      [31] 宋华, 张永江, 宋华林, 代敏. 柠檬酸对负载型磷化镍催化剂加氢脱硫性能的影响[J]. 燃料化学学报, 2012, 40(10): 1246-1251.(SONG Hua, ZHANG Yong-jiang, SONG Hua-lin, DAI Min. Effect of citric acid on hydrodesulfurization performance of the supported nickel phosphide catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1246-1251.)

    32. [32]

      [32] SUN F X, WU W C, WU Z L, GUO J, WEI Z B, YANG Y X, JIANG Z X, YIAN F P, LI C. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and Ni-Mo-P catalysts[J]. J Catal, 2004, 228(2): 298-310.

    33. [33]

      [33] WEI N, JI S F, WU P Y, GUO Y N, LIU H, ZHU J Q, LI C Y. Preparation of nickel phosphide/SBA-15/cordierite monolithic catalysts and catalytic activity for hydrodesulfurization of dibenzothiophene[J]. Catal Today, 2009, 147: S66-S70.

    34. [34]

      [34] OYAMA S T, LEE Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT[J]. J Catal, 2008, 258(2): 393-400.

    35. [35]

      [35] 宋华, 徐晓伟, 代敏, 宋华林. Pt对Ni2P/MCM-41催化剂加氢脱硫性能的影响[J]. 高等学校化学学报, 2013, 34(11): 2609-2616.(SONG Hua, XU Xiao-wei, DAI Min, SONG Hua-lin. Effect of Pt on hydrodesulfurization performance of the Ni2P/MCM-41 catalyst[J]. Chemical Journal of Chinese Universities, 2013, 34(11): 2609-2616.)

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    9. [9]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    19. [19]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(0)
  • Abstract views(533)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return