Citation: Kun Gao, Yi-Yang Zhu, Da-Qing Tong, Li Tian, Zhao-Hui Wang, Xiao-Zu Wang. Hydrothermal synthesis of single-crystal CeCO3OH and their thermal conversion to CeO2[J]. Chinese Chemical Letters, ;2014, 25(2): 383-386. shu

Hydrothermal synthesis of single-crystal CeCO3OH and their thermal conversion to CeO2

  • Corresponding author: Xiao-Zu Wang, 
  • Received Date: 10 August 2013
    Available Online: 26 September 2013

    Fund Project: This work was supported financially by the Program for Innovative Research Team in Jiangsu Province (No. SZK [2011]87) (No. SZK [2011]87)Special Research Foundation of Young teachers of Nanjing University of Technology (No. 39701007). (No. SZT[2011]43)

  • Hexagonal single-crystalline cerium carbonate hydroxide (CeCO3OH) precursors with dendrite morphologies have been synthesized by a facile hydrothermal method at 180 ℃ using CeCl3·7H2O as the cerium source, triethylenetetramine as both an alkaline and carbon source, with triethylenetetramine also playing an important role in the formation of the dendrite structure. Polycrystalline ceria (CeO2) have been obtained by calcining the precursor at 500 ℃ for 4 h. The morphology of the precursor was partly maintained during the heating process. The optical absorption spectra indicate the CeO2 nano/microstructures have a direct band gap of 2.92 eV, which is lower than values of the bulk powder due to the quantum size effect. The high absorption in the UV region for CeO2 nano/microstructure indicated that this material was expected to be used as UV-blocking materials.
  • 加载中
    1. [1]

      [1] D. Andreeva, I. Ivanov, L. Ilieva, et al., Nanosized gold catalysts supported on ceria and ceria-alumina for WGS reaction: influence of the preparation method, Powder Technol. 333 (2007) 153-160.

    2. [2]

      [2] C. Larese, M.L. Granados, F.C. Galisteo, et al., TWC deactivation by lead: a study of the Rh/CeO2 system, Appl. Catal. B 62 (2006) 132-143.

    3. [3]

      [3] Y. Dai, B.D. Li, H.D. Quan, et al., CeCl3·7H2O as an efficient catalyst for one-pot synthesis of b-amino ketones by three-component Mannich reaction, Chin. Chem. Lett. 21 (2010) 31-34.

    4. [4]

      [4] M. Hajjami, A.G. Choghamarani, M.A. Zolfigol, et al., An efficient and versatile synthesis of aromatic nitriles from aldehydes, Chin. Chem. Lett. 23 (2012) 1323-1326.

    5. [5]

      [5] G. Jacobs, L. Williams, U. Graham, et al., Low-temperature water-gas shift: in-situ DRIFTS reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications, J. Phys. Chem. B 107 (2003) 10398-10404.

    6. [6]

      [6] M.S. Tsai, Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance, Mater. Sci. Eng. B 110 (2004) 132-134.

    7. [7]

      [7] D.S. Lim, J.W. Ahn, H.S. Park, et al., The effect of CeO2 abrasive size on dishing and step height reduction of silicon oxide film in STI-CMP, Surf. Coat. Technol. 200 (2005) 1751-1754.

    8. [8]

      [8] Y.H. Kim, S.K. Kimb, N. Kimb, et al., Crystalline structure of ceria particles controlled by the oxygen partial pressure and STI CMP performances, Ultramicroscopy 108 (2008) 1292-1296.

    9. [9]

      [9] A.W. Xu, Y. Gao, H.Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catal. 207 (2002) 151-157.

    10. [10]

      [10] D.C. Koskenmaki, K.A. Gschneidner Jr., Handbook on the Physics and Chemistry of Rare Earths, vol. 1, North-Holland, Amsterdam, 1978, pp. 338-340.

    11. [11]

      [11] Y.G. Sun, B. Mayers, Y.N. Xia, Template engaged replacement reaction: a one step approach to the large scale synthesis of metal nanostructures with hollow interiors, Nano Lett. 3 (2003) 675-679.

    12. [12]

      [12] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271 (1996) 933-937.

    13. [13]

      [13] K. Li, P.S. Zhao, Synthesis and characterization of CeCO3OH one-dimensional quadrangular prisms by a simple method, Mater. Lett. 63 (2009) 2013-2015.

    14. [14]

      [14] Z.Y. Guo, F.F. Jian, F.L. Du, Sonochemical synthesis of luminescent CeCO3OH onedimensional quadrangular prisms, Mater. Res. Bull. 207 (2011) 35-41.

    15. [15]

      [15] Z.Y. Guo, F.L. Du, G.C. Li, et al., Synthesis and characterization of singlecrystal Ce(OH)CO3 and CeO2 triangular microplates, Inorg. Chem. 45 (2006) 4167-4169.

    16. [16]

      [16] Z.Y. Guo, F.L. Du, G.C. Li, et al., Synthesis and Characterization of bundle-like structures consisting of single crystal Ce(OH)CO3 nanorods, Mater. Lett. 61 (2007) 694-696.

    17. [17]

      [17] M.Y. Cui, J.X. He, N.P. Lu, et al., Morphology and size control of cerium carbonate hydroxide and ceria micro/nanostructures by hydrothermal technology, Mater. Chem. Phys. 121 (2010) 314-319.

    18. [18]

      [18] Z.Y. Guo, F.L. Du, G.C. Li, et al., Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2, Mater. Chem. Phys. 113 (2009) 53-56.

    19. [19]

      [19] E.L. Qi, L.Y. Man, S.H. Wang, et al., Microwave homogeneous synthesis and photocatalytic property of CeO2 nanorods, Chin. J. Mater. Res. 25 (2011) 221-224.

    20. [20]

      [20] L. Yan, R.B. Yu, J. Chen, et al., Template-free hydrothermal synthesis of CeO2 nanooctahedrons and nanorods: investigation of the morphology evolution, Cryst. Growth Des. 8 (2008) 1474-1477.

    21. [21]

      [21] X.J. Yang, X.P. Li, X.T. Bai, et al., Facile synthesis and characterization of uniform CdS colloidal spheres, Chin. Chem. Lett. 23 (2012) 1091-1094.

    22. [22]

      [22] W.T. Yao, S.H. Yu, Recent advances in hydrothermal syntheses of low dimensional nanoarchitectures, Int. J. Nanotechnol. 4 (2007) 129-162.

    23. [23]

      [23] D. Zhao, J.S. Tan, Q.Q. Ji, et al., Mn2O3 nanomaterials: facile synthesis and electrochemical properties, Chin. J. Inorg. Chem. 26 (2010) 832-838.

    24. [24]

      [24] Z.H. Han, N. Guo, K.B. Tang, et al., Hydrothermal crystal growth and characterization of cerium hydroxycarbonates, J. Cryst. Growth 219 (2000) 315-318.

    25. [25]

      [25] C.H. Lu, H.C. Wang, Formation and microstructural variation of cerium carbonate hydroxide prepared by the hydrothermal process, Mater. Sci. Eng. B90 (2002) 138-141.

    26. [26]

      [26] K. Li, P.S. Zhao, Synthesis of single-crystalline Ce(CO3)(OH) with novel dendrite morphology and their thermal conversion to CeO2, Mater. Res. Bull. 45 (2010) 243-246.

    27. [27]

      [27] Z. Wang, M.X. Fang, Y.L. Pan, et al., Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption-desorption analysis, Chem. Eng. Sci. 93 (2013) 238-249.

    28. [28]

      [28] Y.W. Zhang, R. Si, C.S. Liao, et al., Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals, J. Phys. Chem. B 107 (2003) 10159-10167.

    29. [29]

      [29] N. Imanaka, T. Masui, H. Hirai, et al., Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials, Chem. Mater. 15 (2003) 2289-2291.

    30. [30]

      [30] S. Tsunekawa, T. Fukuda, A. Kasuya, Blue shift in ultraviolet absorption spectra of monodisperse CeO2 x nanoparticles, J. Appl. Phys. 87 (1999) 1318-1321.

    31. [31]

      [31] Y.B. Yin, X. Shao, L.M. Zhao, et al., Synthesis and characterization of CePO4 nanowires via microemulsion method at room temperature, Chin. Chem. Lett. 20 (2009) 857-860.

  • 加载中
    1. [1]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    2. [2]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    3. [3]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    4. [4]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    5. [5]

      Lanlan ZongYuxin DaiJiahao XuChaofeng QiaoYao QiChengyuan MaHong LiXiaobin PangXiaohui Pu . Luteolin and glycyrrhetinic exert cooperative effect on liver cancer by selfassembling into carrier-free nanostructures. Chinese Chemical Letters, 2025, 36(10): 111325-. doi: 10.1016/j.cclet.2025.111325

    6. [6]

      Jianning ZhangYihuai ZhangGuoxin MaJingchen ZhaoTao ZhangJian Liu . Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure. Chinese Chemical Letters, 2025, 36(7): 110516-. doi: 10.1016/j.cclet.2024.110516

    7. [7]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    8. [8]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    9. [9]

      Chongbei WuBenzhi WangXuan LiJiaxuan GuYihan WuZhe ZhaoPengfei JiaJizhou Jiang . Dual activation pathways based on OH-functionalized alk-Ti3C2 MXene/RuOx boosting the hydrogen generation. Chinese Chemical Letters, 2025, 36(8): 111162-. doi: 10.1016/j.cclet.2025.111162

    10. [10]

      Xifeng LuPei Su . Design and application of metal-organic frameworks derivatives as 3-electron ORR electrocatalysts for OH generation in wastewater treatment: A review. Chinese Chemical Letters, 2025, 36(11): 110909-. doi: 10.1016/j.cclet.2025.110909

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    13. [13]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    14. [14]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    15. [15]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    16. [16]

      Xinyun LiuLong YuanXiaoli PengShilan LiShengdong JingShengjun LuHua LeiYufei ZhangHaosen Fan . MOF derived phosphorus doped cerium dioxide nanorods modified separator as efficient polysulfide barrier for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110369-. doi: 10.1016/j.cclet.2024.110369

    17. [17]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    18. [18]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    19. [19]

      Xiuxiu JiaTao YinNianpeng LiHua ZhangAnxian ShiAbdukader AbdukayumSanshuang GaoGuangzhi Hu . Reticulated lanthanum (La) carbonate-carbon composite for efficient phosphorus removal from eutrophic wastewater. Chinese Chemical Letters, 2025, 36(6): 110398-. doi: 10.1016/j.cclet.2024.110398

    20. [20]

      Qiuxia TanE PangQin WangYuanyu TangPan ZhuShaojing ZhaoJianing YiShiguang JinMinhuan Lan . Manganese carbonate-based nanoplatform for starvation therapy cascaded chemodynamic therapy, enhanced phototherapy and immune activation. Chinese Chemical Letters, 2025, 36(10): 110770-. doi: 10.1016/j.cclet.2024.110770

Metrics
  • PDF Downloads(0)
  • Abstract views(1254)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return