Citation: Yang Pu, Guo-Liang Zhu, Bao-Sheng Ge, Dao-Yong Yu, Yi-Peng Wang, Song Qin. Photocurrent generation by recombinant allophycocyanin trimer multilayer on TiO2 electrode[J]. Chinese Chemical Letters, ;2013, 24(2): 163-166. shu

Photocurrent generation by recombinant allophycocyanin trimer multilayer on TiO2 electrode

  • Corresponding author: Bao-Sheng Ge,  Song Qin, 
  • Received Date: 30 November 2012
    Available Online: 12 December 2012

    Fund Project: The authors gratefully thank the financial support provided by the National Natural Science Foundation of China (No. 41176144) (No. 41176144)the Fundamental Research Funds for the Central Universities (No. 10CX05003A). (No. 200905021-3)

  • A recombinant allophycocyanin trimer was successfully immobilized on a mesoporous TiO2 electrode. The formation of the immobilized surface was confirmed bymultilayer adsorption of protein complexes. The key biophotovoltaic parameters were obtained, which showed that the recombinant allophycocyanin trimer could be a candidate for photosensitizer materials. The values of short-circuit current, open-circuit voltage, fill factor, and conversion efficiency were up to 0.73 mA/cm2, 0.52 V, 0.69, and 0.26%, respectively.
  • 加载中
    1. [1]

      [1] B. O'regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

    2. [2]

      [2] A. Mershin, K. Matsumoto, L. Kaiser, et al., Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO, Sci. Rep. 2 (2012).

    3. [3]

      [3] V. Thavasi, T. Lazarova, S. Filipek, et al., Study on the feasibility of bacteriorhodopsin as bio-photosensitizer in excitonic solar cell: a first report, J. Nanosci. Nanotechnol. 9 (2009) 1679-1687.

    4. [4]

      [4] N. Terasaki, M. Iwai, N. Yamamoto, et al., Photocurrent generation properties of histag-photosystem Ⅱ immobilized on nanostructured gold electrode, Thin Solid Films 516 (2008) 2553-2557.

    5. [5]

      [5] M. Nagata, M. Amano, T. Joke, et al., Immobilization and photocurrent activity of a light-harvesting antenna complex Ⅱ, LHCⅡ, isolated from a plant on electrodes, ACS Macro Lett. 1 (2012) 296-299.

    6. [6]

      [6] A. McGregor, M. Klartag, L. David, et al., Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket, J. Mol. Biol. 384 (2008) 406-421.

    7. [7]

      [7] A.A. Arteni, G. Ajlani, E.J. Boekema, Structural organisation of phycobilisomes from Synechocystis sp strain PCC6803 and their interaction with the membrane, Biochim. Biophys. Acta-Bioenerg. 1787 (2009) 272-279.

    8. [8]

      [8] R. MacColl, Allophycocyanin and energy transfer, Biochim. Biophys. Acta (BBA)-Bioenerg. 1657 (2004) 73-81.

    9. [9]

      [9] S.F. Liu, Y.J. Chen, Y.D. Lu, et al., Biosynthesis of fluorescent cyanobacterial allophycocyanin trimer in Escherichia coli, Photosynth. Res. 105 (2010) 135-142.

    10. [10]

      [10] Y.A. Cai, J.T. Murphy, G.J. Wedemayer, et al., Recombinant phycobiliproteins: recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains, Anal. Biochem. 290 (2001) 186-204.

    11. [11]

      [11] T. Ueno, T. Nagano, Fluorescent probes for sensing and imaging, Nat. Methods 8 (2011) 642-645.

    12. [12]

      [12] S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, et al., Submicrometer metallic barcodes, Science 294 (2001) 137-141.

    13. [13]

      [13] E. Dague, D. Alsteens, J.P. Latge, et al., Chemical force microscopy of single live cells, Nano Lett. 7 (2007) 3026-3030.

    14. [14]

      [14] A.E. Pelling, S. Sehati, E.B. Gralla, et al., Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae, Science 305 (2004) 1147-1150.

    15. [15]

      [15] P.N. Ciesielski, C.J. Faulkner, M.T. Irwin, et al., Enhanced photocurrent production by photosystem I multilayer assemblies, Adv. Funct. Mater. 20 (2010) 4048-4054.

    16. [16]

      [16] L. Frolov, O. Wilner, C. Carmeli, et al., Fabrication of oriented multilayers of photosystem I proteins on solid surfaces by auto-metallization, Adv. Mater. 20 (2008) 263-266.

    17. [17]

      [17] P.N. Ciesielski, F.M. Hijazi, A.M. Scott, et al., Photosystem I-Based biohybrid photoelectrochemical cells, Bioresour. Technol. 101 (2010) 3047-3053.

    18. [18]

      [18] I. McConnell, G.H. Li, G.W. Brudvig, Energy conversion in natural and artificial photosynthesis, Chem. Biol. 17 (2010) 434-447.

    19. [19]

      [19] M.H. Ham, J.H. Choi, A.A. Boghossian, et al., Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate, Nat. Chem. 2 (2010) 929-936.

    20. [20]

      [20] K. Kalyanasundaram, M. Graetzel, Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage, Curr. Opin. Biotechnol. 21 (2010) 298-310.

  • 加载中
    1. [1]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    2. [2]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    3. [3]

      Jiliang DengGuoliang ShiZhihang YeQuan XiaoXiaoting ZhangLei RenFangyu YangMiao Wang . Unveiling and swift diagnosing chronic wound healing with artificial intelligence assistance. Chinese Chemical Letters, 2025, 36(3): 110496-. doi: 10.1016/j.cclet.2024.110496

    4. [4]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    5. [5]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    6. [6]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    7. [7]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    8. [8]

      Yunxin LiJinghui ZhangJisen ChenFeng ZhuZhiqiang LiuPeng BaoWei ShenSheng Tang . Detection of SARS-CoV-2 based on artificial intelligence-assisted smartphone: A review. Chinese Chemical Letters, 2024, 35(7): 109220-. doi: 10.1016/j.cclet.2023.109220

    9. [9]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    10. [10]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    11. [11]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    12. [12]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    13. [13]

      Hongbin Liu Putao Zhang . Effective approach to stabilize silicon anode: Controllable molecular construction of artificial solid electrolyte interphase. Chinese Journal of Structural Chemistry, 2025, 44(3): 100444-100444. doi: 10.1016/j.cjsc.2024.100444

    14. [14]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    15. [15]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    16. [16]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    17. [17]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    18. [18]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    19. [19]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    20. [20]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

Metrics
  • PDF Downloads(0)
  • Abstract views(789)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return