Citation: WANG Liang, ZHANG Hong-guang, GUO Chun-yu, FENG Li-juan, LI Chun-hu, WANG Wen-tai. Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 834-842. shu

Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity

  • Corresponding author: WANG Wen-tai, wentaiwang@ouc.edu.cn
  • Received Date: 21 March 2019
    Revised Date: 26 April 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (51602297), Fundamental Research Funds for the Central Universities (201612007), Postdoctoral Innovation Program of Shandong Province (201603043) and the Major Research Project of Shandong Province (2016ZDJS11A04)Fundamental Research Funds for the Central Universities 201612007the National Natural Science Foundation of China 51602297Postdoctoral Innovation Program of Shandong Province 201603043the Major Research Project of Shandong Province 2016ZDJS11A04

Figures(7)

  • A novel ternary Au NPs/g-C3N4/BiOBr Z-scheme heterojunction composite was fabricated through hydrothermal and in-situ reduction method, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy and photoluminescence emission spectroscopy. The photocatalytic activity was evaluated by the degradation of phenol under visible-light irradiation. It was found that Au NPs/g-C3N4/BiOBr showed enhanced photocatalytic activity, which is 3-fold higher than g-C3N4 and 2.5-fold higher than BiOBr. This could be attributed to the effective separation of photogenerated electron-hole pairs, narrowed band gap (2.10 eV) and surface plasmon resonance (SPR).
  • 加载中
    1. [1]

      ZHU Z, MURUGANANTHAN M, GU J, ZHANG Y. Fabrication of a Z-Scheme g-C3N4/Fe-TiO2 Photocatalytic composite with enhanced photocatalytic activity under visible light irradiation[J]. Catalysts, 2018,8(112):1-16.  

    2. [2]

      CHENG N, TIAN J, LIU Q, GE C, QUSTI A H, ASIRI A M, AL-YOUBI A O, SUN X. Au-nanoparticle-loaded graphitic carbon nitride nanosheets:Green photocatalytic synthesis and application toward the degradation of organic pollutants[J]. ACS Appl Mater Inter, 2013,5(15):6815-6819. doi: 10.1021/am401802r

    3. [3]

      ZHAO Y, WANG W, LI Y, ZHANG Y, YAN Z, HUO Z. Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production[J]. Nanoscale, 2014,6(1):195-198. doi: 10.1039/C3NR04280D

    4. [4]

      CHONG B, CHEN L, WANG W, HAN D, WANG L, FENG L, LI Q, LI C. Visible-light-driven Ag-decorated g-C3N4/Bi2WO6 Z-scheme composite for high photocatalytic activity[J]. Mater Lett, 2017,204:149-153. doi: 10.1016/j.matlet.2017.06.033

    5. [5]

      WANG L, SUN B, WANG W, FENG L, LI Q, LI C. Modification of Bi2WO6 composites with rGO for enhanced visible light driven NO removal[J]. Asia Pac J Chem Eng, 2017,12(1):121-127. doi: 10.1002/apj.v12.1

    6. [6]

      QU M, WAN S, ZHONG Q, ZHANG S, SONG Y, GUO L, CAI W, XU Y. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4(040) with enhanced visible-light-induced photocatalytic oxidation performance[J]. Appl Catal B:Environ, 2018,221:97-107. doi: 10.1016/j.apcatb.2017.09.005

    7. [7]

      SAFAEI J, ULLAH H, MOHAMED N A, MOHAMED NOH M F, SOH M F, TAHIR A A, AHMAD LUDIN N, IBRAHIM M A, WAN ISAHAK W N R, MAT TERIDI M A. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst[J]. Appl Catal B:Environ, 2018,234:296-310. doi: 10.1016/j.apcatb.2018.04.056

    8. [8]

      YE L, LIU J, JIANG Z, PENG T, ZAN L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Appl Catal B:Environ, 2013,142-143:1-7. doi: 10.1016/j.apcatb.2013.04.058

    9. [9]

      YANG Z, LI J, CHENG F, CHEN Z, DONG X. BiOBr/protonated graphitic C3N4 heterojunctions:Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity[J]. J Alloy Compd, 2015,634:215-222. doi: 10.1016/j.jallcom.2015.02.103

    10. [10]

      ZHENG Y, JIAO Y, ZHU Y, LI L H, HAN Y, CHEN Y, DU A, JARONIEC M, QIAO S Z. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat Commun, 2014,5(3783):1-8.  

    11. [11]

      LI J, SHEN B, HONG Z, LIN B, GAO B, CHEN Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chem Commun, 2012,48(98):12017-12019. doi: 10.1039/c2cc35862j

    12. [12]

      JIANG M, SHI Y, HUANG J, WANG L, SHE H, TONG J, SU B, WANG Q. Synthesis of flowerlike g-C3N4/BiOBr with enhanced visible light photocatalytic activity for dye degradation[J]. Eur J Inorg Chem, 2018,2018(17):1834-1841. doi: 10.1002/ejic.201800110

    13. [13]

      LI W, FENG C, DAI S, YUE J, HUA F, HOU H. Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light[J]. Appl Catal B:Environ, 2015,168-169:465-471. doi: 10.1016/j.apcatb.2015.01.012

    14. [14]

      TONDA S, KUMAR S, KANDULA S, SHANKER V. Fe-doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight[J]. J Mater Chem A, 2014,2(19):6772-6780. doi: 10.1039/c3ta15358d

    15. [15]

      WANG H, ZHANG L, CHEN Z, HU J, LI S, WANG Z, LIU J, WANG X. Semiconductor heterojunction photocatalysts:Design, construction, and photocatalytic performances[J]. Chem Soc Rev, 2014,43(15):5234-5244. doi: 10.1039/C4CS00126E

    16. [16]

      HUANG Z, SONG J, WANG X, PAN L, LI K, ZHANG X, WANG L. Switching charge transfer of C3N4/W18O49 from type-Ⅱ to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution[J]. Nano Energy, 2017,10:308-316.

    17. [17]

      PAN L, ZHANG J, JIA X, MA Y, ZHANG X, WANG L, ZOU J. Highly efficient Z-scheme WO3-x quantum dots/TiO2 for photocatalytic hydrogen generation[J]. Chin J Catal, 2017,38(2):253-259.  

    18. [18]

      JIA X, M. TAHIR, PAN L, HUANG Z, ZHANG X, WANG L, ZOU J. Direct Z-scheme composite of CdS and oxygen-defected CdWO4:An efficient visible-light-driven photocatalyst for hydrogen evolution[J]. Appl Catal B:Environ, 2016,12:154-161.

    19. [19]

      FU J, TIAN Y, CHANG B, XI F, DONG X. BiOBr-carbon nitride heterojunctions:Synthesis, enhanced activity and photocatalytic mechanism[J]. J Mater Chem, 2012,22(39):21159-21166. doi: 10.1039/c2jm34778d

    20. [20]

      WANG W, WU Z, EFTEKHARI E, HUO Z, LI X, TADE M O, YAN C, YAN Z, LI C, LI Q, ZHAO D. High performance heterojunction photocatalytic membranes formed by embedding Cu2O and TiO2 nanowires in reduced graphene oxide[J]. Catal Sci Technol, 2018,8(6):1704-1711. doi: 10.1039/C8CY00082D

    21. [21]

      LIU X, CAI L. Novel indirect Z-scheme photocatalyst of Ag nanoparticles and polymer polypyrrole co-modified BiOBr for photocatalytic decomposition of organic pollutants[J]. Appl Surf Sci, 2018,445:242-254. doi: 10.1016/j.apsusc.2018.03.178

    22. [22]

      DI J, XIA J, YIN S, XU H, HE M, LI H, XU L, JIANG Y. A g-C3N4/BiOBr visible-light-driven composite:Synthesis via a reactable ionic liquid and improved photocatalytic activity[J]. RSC Adv, 2013,3(42):19624-19631. doi: 10.1039/c3ra42269k

    23. [23]

      GAO H, ZHANG P, ZHAO J, ZHANG Y, HU J, SHAO G. Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system[J]. Appl Catal B:Environ, 2017,210:297-305. doi: 10.1016/j.apcatb.2017.03.050

    24. [24]

      YANG Y, GUO W, GUO Y, ZHAO Y, YUAN X, GUO Y. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity[J]. J Hazard Mater, 2014,271:150-159. doi: 10.1016/j.jhazmat.2014.02.023

    25. [25]

      HOU J, WANG Z, YANG C, ZHOU W, JIAO S, ZHU H. Hierarchically plasmonic Z-scheme photocatalyst of Ag/AgCl nanocrystals decorated mesoporous single-crystalline metastable Bi20TiO32 nanosheets[J]. J Phys Chem C, 2013,117(10):5132-5141. doi: 10.1021/jp311996r

    26. [26]

      YU X, WU P, QI C, SHI J, FENG L, LI C, WANG L. Ternary-component reduced graphene oxide aerogel constructed by g-C3N4/BiOBr heterojunction and graphene oxide with enhanced photocatalytic performance[J]. J Alloy Compd, 2017,729:162-170. doi: 10.1016/j.jallcom.2017.09.175

    27. [27]

      GUO Y, ZHANG J, ZHOU D, DONG S. Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation[J]. J Mol Liq, 2018,262:194-203. doi: 10.1016/j.molliq.2018.04.091

  • 加载中
    1. [1]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    2. [2]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    3. [3]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    4. [4]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Hui WangHaodong JiDandan ZhangXudong YangHanchun ChenChunqian JiangWeiliang SunJun DuanWen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200

    9. [9]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    10. [10]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    11. [11]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    12. [12]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    15. [15]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(4)
  • Abstract views(637)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return