Citation: ZHOU Zhi-hui, JIN Can, ZHANG Hao-yi, LIANG Xiao-lei, ZHANG Fu-min, XIAO Qiang. CO2 adsorption and separation on phloroglucinol-melamine -formaldehyde polymeric nanofibers[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 242-248. shu

CO2 adsorption and separation on phloroglucinol-melamine -formaldehyde polymeric nanofibers

  • Corresponding author: XIAO Qiang, xiaoq@zjnu.cn
  • Received Date: 18 September 2018
    Revised Date: 28 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21471131) and College Students Technology Innovation Plan of Zhejiang Province(XinMiao Talent Plan)(2017R404017)College Students Technology Innovation Plan of Zhejiang Province(XinMiao Talent Plan) 2017R404017the National Natural Science Foundation of China 21471131

Figures(9)

  • Phloroglucinol-melamine-formaldehyde polymeric nanofibers (PMF) were hydrothermally synthesized by a polycondensation method using melamine, phloroglucinol and formaldehyde as starting materials. The effect of temperature on the PMF synthesis was investigated. The morphology and structure of the as-synthesized PMF were characterized by the scanning electron microscope (SEM), transmission electron microscope (TEM), N2 adsorption-desorption and Fourier-transform infrared spectrometer (FT-IR) etc. Pure gas adsorption equilibrium isotherms of CO2 and N2 were determined by the volumetric method. The PMF sample synthesized at 393 K presented a higher specific surface area (64 m2/g) and a higher adsorption capacity of CO2 (1.83 mmol/g@118 kPa, 298 K). Breakthrough column experiments indicated that efficient separation of CO2-N2 mixtures could be achieved on the PMF at 298 K and various pressures ranging from 200 to 600 kPa. After the PMF was thermally treated at 873 K in various atmospheres such as N2, H2, water vapor, etc., it was found that the specific surface area and micropore volume were greatly increased. Among the posttreated PMF samples, the one treated in 15% H2O stream showed an improved CO2 adsorption amount up to 2.83 mmol/g at 298 K and 118 kPa.
  • 加载中
    1. [1]

      SONG C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal Today, 2006,115(1):2-32.  

    2. [2]

      HUANG Xue-qin, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. A wet ball-milling method to nanocrystalline Li4SiO4 materials for CO2 capture at high temperatures[J]. J Fuel Chem Technol, 2016,44(9):1119-1124. doi: 10.3969/j.issn.0253-2409.2016.09.013 

    3. [3]

      GAO Feng, LI Cun-mei, WANG Yuan, SUN Guo-hua, LI Kai-xi. Preparation of resin-base spherical activated carbon and study on adsorption properties towards CO2[J]. J Fuel Chem Technol, 2014,42(1):116-120.  

    4. [4]

      MA T Y, LIU L, YUAN Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chem Soc Rev, 2013,42(9):3977-4003. doi: 10.1039/C2CS35301F

    5. [5]

      BAE Y S, SNURR R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew Chem Int Ed, 2011,50(49):11586-11596. doi: 10.1002/anie.201101891

    6. [6]

      HARLICK P J E, TEZEL F H. An experimental adsorbent screening study for CO2 removal from N2[J]. Microporous Mesoporous Mater, 2004,76(1/3):71-79.  

    7. [7]

      HE Y F, SEATON N A. Heats of adsorption and adsorption heterogeneity for methane, ethane, and carbon dioxide in MCM-41[J]. Langmuir, 2006,22(3):1150-1155. doi: 10.1021/la052237k

    8. [8]

      CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. J Fuel Chem Technol, 2015,43(1):108-115. doi: 10.3969/j.issn.0253-2409.2015.01.017 

    9. [9]

      WANG D, MA X, SENTORUNSHALABY C, SONG C S. Development of carbon-based "molecular basket" sorbent for CO2 capture[J]. Ind Eng Chem Res, 2012,51(7):3048-3057. doi: 10.1021/ie2022543

    10. [10]

      ZHAO Hui-ling, HU Jun, WANG Jian-jun, ZHOU Li-hui, LIU Hong-lai. CO2 capture by the amine-modified mesoporous materials[J]. Acta Phys-Chim Sin, 2007,23(6):801-806.  

    11. [11]

      HAO Shi-you, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong, YANG Hui. One-pot synthesis of amino-functionalized SBA-15 and their CO2 adsorption properties[J]. Chin J Inorg Chem, 2010,26(6):982-988.  

    12. [12]

      HERM Z R, SWISHER J A, SMIT B, KRISHNA R, LONG J R. Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture[J]. J Am Chem Soc, 2011,133(15):5664-5667. doi: 10.1021/ja111411q

    13. [13]

      LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009,38(5):1477-1504. doi: 10.1039/b802426j

    14. [14]

      MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J Am Chem Soc, 2005,127(51):17998-17999. doi: 10.1021/ja0570032

    15. [15]

      DING S Y, WANG W. Covalent organic frameworks (COFs):from design to applications[J]. Chem Soc Rev, 2013,42(2):548-568. doi: 10.1039/C2CS35072F

    16. [16]

      XIANG Z H, CAO D P. Porous covalent-organic materials:Synthesis, clean energy application and design[J]. J Mater Chem A, 2013,1(8):2691-2718. doi: 10.1039/C2TA00063F

    17. [17]

      BEN T, PEI C Y, ZHANG D L, XU J, DENG F, JING X F, QIU S L. Gas storage in porous aromatic frameworks(PAFs)[J]. Energy Environ Sci, 2011,4(10):3991-3999. doi: 10.1039/c1ee01222c

    18. [18]

      PEI C Y, BEN T, GUO H, XU J, DENG F, XIANG Z H, CAO D P, QIU S L. Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties[J]. Phil Trans R Soc A, 2013,371(2000):1-15.  

    19. [19]

      LIU L, LI P Z, ZHU L L, ZOU R Q, ZHAO Y L. Microporous polymelamine network for highly selective CO2 adsorption[J]. Polymer, 2013,54(2):596-600. doi: 10.1016/j.polymer.2012.12.015

    20. [20]

      XU C, HEDIN N. Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption[J]. J Mater Chem A, 2013,1(10):3406-3414. doi: 10.1039/c3ta01160g

    21. [21]

      SCHWAB M G, FASSBENDER B, SPIESS H W, THOMAS A, FENG X, MULLEN K. Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry[J]. J Am Chem Soc, 2009,131(21):7216-7217. doi: 10.1021/ja902116f

    22. [22]

      HU J X, SHANG H, WANG J G, LUO L, XIAO Q, ZHONG Y J, ZHU W D. Highly enhanced selectivity and easy regeneration for the separation of CO2 over N2 on melamine-based microporous organic polymers[J]. Ind Eng Chem Res, 2014,53(29):11828-11837. doi: 10.1021/ie501736t

    23. [23]

      HU Jing-xiu, ZHANG Jing, ZOU Jian-feng, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. Nitrogen-rich microporous carbon derived from melamine-based porous polymer for selective CO2 adsorption[J]. Acta Phys-Chim Sin, 2014,30(6):1169-1174.  

    24. [24]

      ZHOU H H, XU S, SU H P, WANG M, QIAO W M, LING L C, LONG D H. Facile preparation and ultra-microporous structure of melamine-resorcinol-formaldehyde polymeric microspheres[J]. Chem Commun, 2013,49(36):3763-3765. doi: 10.1039/c3cc41109e

    25. [25]

      WANG M, WANG J, QIAO W M, LING L C, LONG D H. Scalable preparation of nitrogen-enriched carbon microspheres for efficient CO2 capture[J]. RSC Adv, 2014,4(106):61456-61464. doi: 10.1039/C4RA11647J

    26. [26]

      XIAO Q, WEN J J, GUO Y N, HU J X, WANG J G, ZHANG F M, TU G M, ZHONG Y J, ZHU W D. Synthesis, carbonization, and CO2 adsorption properties of phloroglucinol-melamine-formaldehyde polymeric nanofibers[J]. Ind Eng Chem Res, 2016,55(49):12667-12674. doi: 10.1021/acs.iecr.6b03494

    27. [27]

      PERALTA D, CHAPLAIS G, SIMON-MASSERON A, BARTHELET K, CHIZALLET C, QUOINEAUD A A, PIRNGRUBER G D. Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations[J]. J Am Chem Soc, 2012,134(19):8115-8126. doi: 10.1021/ja211864w

    28. [28]

      STRELKO V V, KUTS V S, THROWER P A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions[J]. Carbon, 2000,38(10):1499-1503. doi: 10.1016/S0008-6223(00)00121-4

    29. [29]

      LIU L, DENG Q F, HOU X X, YUAN Z Y. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. J Mater Chem, 2012,22(31):15540-15548. doi: 10.1039/c2jm31441j

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    3. [3]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    4. [4]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    5. [5]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    6. [6]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    8. [8]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    9. [9]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    16. [16]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    17. [17]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    18. [18]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(6)
  • Abstract views(966)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return