Citation: CHEN Ying, ZHANG Qi, LIANG Hong-bao, TIAN Gong-wei, LI Jing. Preparation and properties of dibenzothiophene molecularly imprinted functionalized MOF199 adsorbent[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(9): 1130-1136. shu

Preparation and properties of dibenzothiophene molecularly imprinted functionalized MOF199 adsorbent

  • Corresponding author: CHEN Ying, chenying648617@163.com
  • Received Date: 4 May 2018
    Revised Date: 13 July 2018

    Fund Project: the National Natural Science Foundation of China 21463006The project was supported by the National Natural Science Foundation of China(21463006)

Figures(5)

  • Combined with molecular imprinting technology, a novel surface molecularly imprinted polymer material MOF@SMIP was prepared, using MOF199 used as matrix, dibenzothiophene (DBT) as template molecule and methacrylic acid (MAA) as functional monomer. The structure and morphology were characterized by SEM, BET, FT-IR, etc. The adsorption behavior was evaluated using a simulated oil sample. The adsorption equilibrium time was 1.5 h. The MOF@SMIP adsorption capacity for DBT (130.73 mg/g) was higher than that for the MOF199 (37.79 mg/g), while the MOF@SMIP adsorption capacity (57.13 mg/g) was comparable to the MOF@NIP adsorption capacity. The obvious advantage is that the imprint factor fimp is 2.29. Adsorption behavior follows the pseudo-first-order kinetic model, indicating that the adsorption is primarily a physical process. The selective adsorption experiments showed that the MOF@SMIP exhibited a higher affinity for the target molecule DBT than the structural analog benzothiophene (BT) and biphenyl. The relative selection coefficient k' of the adsorbed DBT to the interferent BT and biphenyl was 2.55 and 2.14, respectively.
  • 加载中
    1. [1]

      HU Ting-ping, ZHANG Yan-ming, ZHENG Li-hui, FAN Guo-zhi. Molecular recognition and adsorption properties of benzothiophene molecularly imprinted polymers on silica gel surface[J]. J Fuel Chem Technol, 2010,38(6):722-729. doi: 10.3969/j.issn.0253-2409.2010.06.016

    2. [2]

      CHEN L, XU S, LI J. Recent advances in molecular imprinting technology:Current status, challenges and highlighted applications[J]. Chem Soc Rev, 2011,40(5):2922-2942. doi: 10.1039/c0cs00084a

    3. [3]

      YANG Y Z, LIU X G, XU B S. Recent advances in molecular imprinting technology for the deep desulfurization of fuel oils[J]. New Carbon Mater, 2014,29(1):1-14. doi: 10.1016/S1872-5805(14)60121-9

    4. [4]

      MEHRZAD-SAMARIN M, FARIDBOD F, DEZFULI A S, GANJALI M R. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer[J]. Biosens Bioelectron, 2017,92:618-623. doi: 10.1016/j.bios.2016.10.047

    5. [5]

      CHANUT N, BOURRELLY S, KUCHTA B, SERRE C, CHANG J S, WRIGHT P A, LLEWELLYN P L. Screening the effect of water vapour on gas adsorption performance:Application to CO2 capture from flue gas in metal-organic frameworks[J]. ChemSusChem, 2017,10(7):1543-1553. doi: 10.1002/cssc.v10.7

    6. [6]

      CHOWDHUR Y, MOHAMMAD A. Metal-organic-frameworks for biomedical applications in drug delivery, and as MRI contrast agents[J]. J Biomed Mater Res A, 2017,105(4):1184-1194. doi: 10.1002/jbm.v105.4

    7. [7]

      PAN H, ZHANG P, GAO D, ZHANG Y, LI P, LIU L, CAI L. Noninvasive visualization of respiratory viral infection usingbioorthogonal conjugated near-infrared-emitting quantum dots[J]. ACS Nano, 2014,8(6):5468-5477. doi: 10.1021/nn501028b

    8. [8]

      ZHAO S N, SONG X Z, SONG S Y, ZHANG H J. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors[J]. Coordin Chem Rev, 2017,337:80-96. doi: 10.1016/j.ccr.2017.02.010

    9. [9]

      XU Y, YIN X B, HE X W, ZHANG Y K. Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework[J]. Biosens Bioelectron, 2015,68:197-203. doi: 10.1016/j.bios.2014.12.031

    10. [10]

      BOUGRINI M, FLOREA A, CRISTEA C, SANDULESCU R, VOCANSON F, ERRACHID A, JAFFREZIC-RENAULT N. Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey[J]. Food Control, 2016,59:424-429. doi: 10.1016/j.foodcont.2015.06.002

    11. [11]

      GUO Z, FLOREA A, CRISTEA C, BESSUEILLE F, VOCANSON F, GOUTALAND F, JAFFREZIC-RENAULT N. 1, 3, 5-Trinitrotoluene detection by a molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework[J]. Sensor Actuat B:Chem, 2015,207:960-966. doi: 10.1016/j.snb.2014.06.137

    12. [12]

      NGUYEN L T L, NGUYEN T T, NGUYEN K D, PHAN N T. Metal-organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction[J]. Appl Catal A:Gen, 2012,425:44-52.  

    13. [13]

      WANG Xiao-jing, LIU Chao, DONG Yue, LI Fa-tang, ZHAO Jun, LI Yu-pei. Preparation of activated carbon modified by tetrafluoroboric acid and its adsorptive removal of dibenzothiophene[J]. J Fuel Chem Technol, 2015,43(5):607-613. doi: 10.3969/j.issn.0253-2409.2015.05.013 

    14. [14]

      YUAN Z, LIU Y, AN F. Preparation and phenol-recognizing ability of a poly (methacrylic acid) molecular imprint on the surface of a silica gel[J]. Microchim Acta, 2011,172(1/2):89-94.  

    15. [15]

      LI H, XU M, WANG S, LU C, LI Z. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers[J]. Appl Surf Sci, 2015,328:649-657. doi: 10.1016/j.apsusc.2014.12.085

    16. [16]

      LIU W, QIN L, SHI W, CHEN L, YANG Y, LIU X, XU B. Molecularly imprinted polymers on the surface of porous carbon microspheres for capturing dibenzothiophene[J]. Microchim Acta, 2016,183(3):1153-1160. doi: 10.1007/s00604-016-1746-2

    17. [17]

      COLLET F, BART M, SERRES L, MIRIEL J. Porous structure and water vapour sorption of hemp-based materials[J]. Constr Build Mater, 2008,22(6):1271-1280. doi: 10.1016/j.conbuildmat.2007.01.018

    18. [18]

      ZHANG L, YANG L, JELLE B P, WANG Y, GUSTAVSEN A. Hygrothermal properties of compressed earthen bricks[J]. Constr Build Mater, 2018,162:576-583. doi: 10.1016/j.conbuildmat.2017.11.163

    19. [19]

      QIN L, SHI W, LIU W, YANG Y, LIU X, XU B. Surface molecularly imprinted polymers grafted on ordered mesoporous carbon nanospheres for fuel desulfurization[J]. RSC Adv, 2016,6(15):12504-12513. doi: 10.1039/C5RA23582K

    20. [20]

      KHAN N A, JHUNG S H. Adsorptive removal and separation of chemicals with metal-organic frameworks:Contribution of π-complexation[J]. J Hazard Mater, 2017,325:198-213. doi: 10.1016/j.jhazmat.2016.11.070

    21. [21]

      LEE K X, VALLA J A. Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels[J]. Appl Catal B:Environ, 2017,201:359-369. doi: 10.1016/j.apcatb.2016.08.018

    22. [22]

      YANG Y, LIU X, GUO M, LI S, LIU W, XU B. Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene[J]. Colloid Surface A, 2011,377(1):379-385.  

    23. [23]

      XU W, ZHOU W, XU P P, PAN J M, WU X Y, YAN Y S. A molecularly imprinted polymer based on TiO2 as a sacrificial support for selective recognition of dibenzothiophene[J]. Chem Eng J, 2011,172(1):191-198. doi: 10.1016/j.cej.2011.05.089

    24. [24]

      YANG W, ZHOU W, XU W, LI H, HUANG W, JIANG B, YAN Y. Synthesis and characterization of a surface molecular imprinted polymer as a new adsorbent for the removal of dibenzothiophene[J]. J Chem Eng Data, 2012,57(6):1713-1720. doi: 10.1021/je201380m

    25. [25]

      ZUHLKE C A, ANDERSON T P, ALEXANDER D R. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses[J]. Opt Express, 2013,21(7):8460-8473. doi: 10.1364/OE.21.008460

    26. [26]

      YANG W, LIU L, ZHOU Z, LIU H, XIE B, XU W. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization[J]. Appl Surf Sci, 2013,282:809-819. doi: 10.1016/j.apsusc.2013.06.063

    27. [27]

      LI Q, YANG K, LIANG Y, JIANG B, LIU J, ZHANG L, ZHANG Y. Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy[J]. Acs Appl Mater Inter, 2014,6(24):21954-21960. doi: 10.1021/am5072783

    28. [28]

      HUANG R, LIU Q, HUO J, YANG B. Adsorption of methyl orange onto protonated cross-linked chitosan[J]. Arab J Chem, 2017,10(1):24-32. doi: 10.1016/j.arabjc.2013.05.017

    29. [29]

      LIU W, QIN L, YANG Y, LIU X, XU B. Synthesis and characterization of dibenzothiophene imprinted polymers on the surface of iniferter-modified carbon microspheres[J]. Mater Chem Phys, 2014,148(3):605-613. doi: 10.1016/j.matchemphys.2014.08.024

    30. [30]

      ZHANG M, HUANG J, YU P, CHEN X. Preparation and characteristics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes[J]. Talanta, 2010,81(1):162-166.  

    31. [31]

      YU C, FAN X, YU L, BANDOSZ T J, ZHAO Z, QIU J. Adsorptive removal of thiophenic compounds from oils by activated carbon modified with concentrated nitric acid[J]. Energy Fuels, 2013,27(3):1499-1505. doi: 10.1021/ef400029b

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    3. [3]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    4. [4]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    5. [5]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    6. [6]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    7. [7]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    8. [8]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    9. [9]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    10. [10]

      Kunpeng ZhouZhihao ShiXiao-Hong YiPeng WangAiqun LiChong-Chen Wang . MOFs helping heritage against environmental threats. Chinese Chemical Letters, 2025, 36(5): 110226-. doi: 10.1016/j.cclet.2024.110226

    11. [11]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    16. [16]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    17. [17]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    18. [18]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    19. [19]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    20. [20]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

Metrics
  • PDF Downloads(6)
  • Abstract views(679)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return