Citation: LI Jian, HAN Zhong-xi, YAN Qi-tuan, GE Shou-guo, YANG Wei, CHE Lei, WU Sheng-ji. Analytical methods for the determination of mercury species in natural gas condensate[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1421-1432. shu

Analytical methods for the determination of mercury species in natural gas condensate

  • Corresponding author: WU Sheng-ji, wu_shengji@hotmail.com
  • Received Date: 17 September 2020
    Revised Date: 16 October 2020

    Fund Project: The project was supported by the Zhejiang Province Natural Science Foundation (LY19E06003, LQ19B06009)the Zhejiang Province Natural Science Foundation LY19E06003the Zhejiang Province Natural Science Foundation LQ19B06009

Figures(4)

  • Natural gas condensate, a by-product in natural gas exploitation and utilization, is an excellent raw material for naphtha production. However, the natural gas condensate always contains a trace amount of mercury, which may damage the human health and corrode the downstream processing units such as heat exchangers. It is highly demanded that the mercury in natural gas condensate can be identified specifically and analyzed accurately and quickly, which remains a big challenge in natural gas processing industry up to now. This paper reviewed the analytical methods for the determination of mercury species in natural gas condensate, by evaluating the advantages and disadvantages of various measures in terms of mercury extraction and detection in natural gas condensate. It was observed that the gas chromatography-inductively coupled plasma-mass spectrometer with high accuracy and high mercury recovery rate is the best technique at present to determine the mercury species in the natural gas condensate. The state of mercury species and content of mercury are two key factors to govern the selection and optimization of the adsorbent and the process for the efficient removal of mercury in natural gas condensate in different scales, which exacts a novel technique for the fast yet accurate characterization of various mercury species to meet the demands in the natural gas industry.
  • 加载中
    1. [1]

      MAC KINNON M A, BROUWER J, SAMUELSEN S. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration[J]. Prog Energy Combust Sci, 2018,64:62-92.

    2. [2]

      PANG X Q, JIA C Z, WANG W Y. Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins[J]. Pet Sci, 2015,12:1-53.

    3. [3]

      HAN Zhong-xi, WANG Shu-ying, YAN Qi-tuan, GE Shou-guo, WANG Chun-yi. Analysis of natural gas mercury content characteristics of Shuangtuozi gas field in Songliao Basin[J]. Sci Technol Rev, 2015,33:40-44.

    4. [4]

      LIU Quan-you, LI Jian, HOU Lu. Advance of research on mercury and its compounds collecting and measuring methods[J]. Nat Gas Geosci, 2006,14(7):559-565.

    5. [5]

      XUE Yan. Research development of mercury analysis method in petroleum[J]. Pet Petrochem Today, 2008,16(6):33-35.

    6. [6]

      FUTSAETER G, WILSON The UNEP global mercury assessment: Sources, emissions and transport[C]. E3S Web of Conferences, 2012, Rome, Italy.

    7. [7]

      WILHELM S M. Avoiding exposure to mercury during inspection and maintenance operations in oil and gas processing[J]. Process Saf Prog, 1999,18:178-188.

    8. [8]

      KEHAL M, MENNOUR A, REINERT L, FUZELLIER H. Heavy metals in water if the Skikda Bay Les Metaux Lourds dans les Eaux de la Baie De Skikda[J]. Environ Technol, 2004,25:1059-1065.

    9. [9]

      YAMADA J, KAYASAKI M, OTSUKA M, KANETA H. Handing of mercury issues on oil and gas production[J]. J Japn Assoc Perol Technology, 2016,81(5):401-407.

    10. [10]

      GAULIER F, GIBERT A, WALLS D, LANGFORD M, BAKER S, PORCHERON A F, LIENEMANN C P. Mercury speciation in liquid petroleum products: Comparison between on-site approach and lab measurement using size exclusion chromatography with high resolution inductively coupled plasma mass spectrometric detection (SEC-ICP-HR MS)[J]. Fuel Process Technol, 2015,131:254-261.

    11. [11]

      JESUS A D, ZMOZINSKI A V, VIEIRA M A, RIBEIRO A S, SILVA M M. Determination of mercury in naphtha and petroleum condensate by photochemical vapor generation atomic absorption spectrometry[J]. Microchem J, 2013,110:227-232.

    12. [12]

      SALVA A C, GALLUP D L. Mercury removal process is applied to crude oil of southern Argentina[C]. SPE Latin American and Caribbean Petroleum Conference, 2010, Lima, Peru.

    13. [13]

      WILHELM S M, LIANG L, CUSSEN D, KIRCHGESSNER D A. Mercury in crude oil processed in the United States (2004)[J]. Environ Sci Technol, 2007,41:4509-4514.

    14. [14]

      BOUYSSIERE B, BACO F, SAVARY L, LOBINSKI R. Analytical methods for speciation of mercury in gas condensate[J]. Oil Gas Sci Technol-Rev IFP, 2000,55:639-648.

    15. [15]

      FINSTER M E, RAYMOND M R, SCOFIELD M A, SMITH K. Mercury-impacted scrap metal: Source and nature of the mercury[J]. J Envrion Manag, 2015,161:303-308.

    16. [16]

      DOLL B, KNICKERBOCKER B M, NUCCI E. Industry response to the UN global mercury treaty negotiations focus on oil and gas[C]. International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, 2012, Perth, Australia.

    17. [17]

      ZHANG Zhe, LIANG Jin-chuan, HUANG Yong-heng. Study on processes of mercury removal from gas condensate[J]. Petrochem Ind Appl, 2011,30(12):88-90, 104.

    18. [18]

      WANG Wei-ping, WANG Zi-jun. Species and removal methods of mercury in petroleum and natural gas[J]. Corros Protect Petroch Ind, 2010,27(3):1-4.

    19. [19]

      BLOOM N S. Analysis and stability of mercury speciation in petroleum hydrocarbons[J]. Fresenius J Anal Chem, 2000,366:438-443.

    20. [20]

      TAO H, MURAKIMI T, TOMINAGA M, MIYAZAKI A. Mercury speciation in natural gas condensate by gas chromatography-inductively coupled plasma mass spectrometry[J]. J Anal Atom Spectrom, 1998,13:1085-1093.

    21. [21]

      UOP L L C, DES PLAINES I L. 2010: Total mercury and mercury species in liquid hydrocarbons[S]. UOP Method 938-10.

    22. [22]

      FRECH W, BAXTER D C, BAKKLE B, SNELL J, THOMASSEN Y. Determination and speciation of mercury in natural gases and gas condensates[J]. Anal Commun, 1996,33:7H-9H.

    23. [23]

      FURUTA A, SATO X, TAKAHASHI K. Trace analysis of mercury compounds in natural gas condensate[C]. Process of the International Trace Analysis Symposium, 1992, Sendai and Kiryu, Japan.

    24. [24]

      SNELL J, QIAN J, JOHANSSON M, SMIT K, FRECH W. Stability and reaction of mercury species in organic solution[J]. The Analyst, 1998,123:905-909.

    25. [25]

      BLOOM N. Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapour atomic fluorescence detection[J]. Can J Fish Aquat Sci, 1989,46:1131-1140.

    26. [26]

      BOUYSSIERE B, BACO F, SAVARY L, LOBINSKI R. Speciation analysis for mercury in gas condensates by capillary gas chromatography with inductively coupled plasma mass spectrometric detection[J]. J Chromatogr A, 2002,976:431-439.

    27. [27]

      SNELL J P, FRECH W, THOMASSEN Y. Performance improvements in the determination of mercury species in natural gas condensate using an on-line amalgamation trap or solid-phase micro-extraction with capillary gas chromatography-microwave-induced plasma atomic emission spectrometry[J]. Analyst, 1996,121:1055-1060.

    28. [28]

      BULSKA E, BAXTER D C, FRECH W. Capillary column gas chromatography for mercury speciation[J]. Anal Chim Acta, 1991,12:545-554.

    29. [29]

      MIZUISHI K, TAKEUCHI M, HOBO T. Direct GC determination of methylmercury chloride on HBr-methanol-treated capillary columns[J]. Chromatographia, 1997,44(7/8):386-392.

    30. [30]

      KATO T, UEHIRO T, YASUHARA A, MORITA M. Determination of methylmercury species by capillary column gas chromatography with axially viewed inductively coupled plasma atomic-emission-spectrometric detection[J]. J Anal At Spectrom, 1992,715.

    31. [31]

      BARSHICK C M, BARSHICK S A, WALSH E B, VANCE M A, BRITT P F. Application of isotope dilution to ion trap gas chromatography/mass spectrometry[J]. Anal Chem, 1999,71:483-488.

    32. [32]

      LANSENS P, MEULEMAN C, LEERMAKERS M, BAEYENS W. Determination of methylmercury in natural waters by headspace gas chromatography with microwave induced plasma detection after preconcentration on resin containing dithiocarbamate groups[J]. Anal Chim Acta, 1990,234:417-424.

    33. [33]

      LOBINSKI R, ADMAS F C. Speciation analysis by gas chromatography with plasma source spectrometric detection[J]. Spectrochimica Acta, Part B, 1997,52B:1865-1903.

    34. [34]

      SULLIVAN J J, QUIMBY B D. Characterization of computerized photodiode array spectrometer for gas chromatography-atomic emission spectrometry[J]. Anal Chem, 1990,62:1034-1043.

    35. [35]

      QUIMBY B D, SULLIVAN J J. Evaluation of microwave cavity, discharge tube and gas flow system for combined gas-chromatography-atomic emission detection[J]. Anal Chem, 1990,62:1027-1034.

    36. [36]

      PONTES F V M, CARNEIRO M, VAITSMAN D S, MONTEIRO M I C, NETO A A, TRISTO M L B. Investigation of the Grignard reaction and experimental conditions for the determination of inorganic mercury and methylmercury in crude oils by GC-ICP-MS[J]. Fuel, 2014,116:421-426.

    37. [37]

      SCHICKLING C, BROEKAERT J A C. Determination of mercury species in gas condensates by on line coupled high performance liquid chromatography and cold vapor atomic absorption spectrometry[J]. Appl Organomet Chem, 1995,9:29-36.

    38. [38]

      ZETTLIZER M, SCHOLER H F, EIDEN R, FALTER R. Determination of elemental, inorganic and organic mercury in North German gas condensates and formation brines[C]. International Symposium on Oilfield Chemistry, 1997, Houston, Texas, USA.

    39. [39]

      YUN Z J, HE B, WANG Z H, WANG T, JIANG G N. Evaluation of different extraction procedures for determination of organic mercury species in petroleum by high performance liquid chromatography coupled with cold vapor atomic fluorescence spectrometry[J]. Talanta, 2013,106:60-65.

    40. [40]

      WILHELM S M, BLOOM N. Mercury in petroleum[J]. Fuel Process Technol, 2000,63:1-27.

    41. [41]

      YAN T Y. Mercury removal from oils[J]. Chem Eng Commun, 2000,177:15-29.

    42. [42]

      JIANG Bin, JIANG Hong, ZHANG Lei. A study on processes of mercury removal from natural gas condensate[J]. Modern Chem Ind, 2018,38(4):201-205.

    43. [43]

      LIN Fu-rong, ZENG Tian-liang. Preparation and performance evaluation of mercury removal adsorbent for natural gas[J]. Chem Eng Oil Gas, 2019,48(1):38-44.

    44. [44]

      CANDELON J C, PUCCI A, JUBIN C. Process for elimination of mercury contained in a hydrocarbon feed with hydrogen recycling[P]. US Patent No. 9011676, 2013-08-29.

    45. [45]

      SURESH KUMAR REDD K, AL SHOAIBI A, SRINIVASAKANNAN C. Gas-phase mercury removal through sulfur impregnated porous carbon[J]. J Ind Eng Chem, 2014,20:2969-2974.

    46. [46]

      ZHANG H, SUN H, ZHANG D, ZHANG W, CHEN S, LI M, LIANG P. Nanoconfinement of Ag nanoparticles inside mesoporous channels of MCM-41 molecule sieve as a regenerable and H2O resistance sorbent for Hg0 removal in natural gas[J]. Chem Eng J, 2019,361:139-147.

    47. [47]

      CHALKIDIS A, JAMPAIAH D, HARTLEY P G, SABRI Y M, BHARGAVA S K. Mercury in natural gas streams: A review of materials and processes for abatement and remediation[J]. J Hazard Mater, 2020,382121036.

    48. [48]

      KHAIRI N A S, YUSOF N A, ABDULLAH A H, MOHAMMAD F. Removal of toxic mercury from petroleum oil by newly synthesized molecularly-imprinted polymer[J]. Int J Mol Sci, 2015,16:10562-10577.

    49. [49]

      NASIRIMOGHADDAM N S, ZEINAIL S, SABBAGHI S. Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples[J]. J Ind Eng Chem, 2015,27:79-87.

  • 加载中
    1. [1]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    2. [2]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    6. [6]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    9. [9]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    10. [10]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    14. [14]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    19. [19]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    20. [20]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

Metrics
  • PDF Downloads(5)
  • Abstract views(883)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return