Citation: Zhang Qian, Yu Yanting, Li Jiale, Li Dong. The C5 C-H Bond Functionalization of Quinolines under Transition-Metal Free Conditions[J]. Chemistry, ;2020, 83(7): 615-620. shu

The C5 C-H Bond Functionalization of Quinolines under Transition-Metal Free Conditions

  • Corresponding author: Li Dong, dongli@mail.hbut.edu.cn
  • Received Date: 5 February 2020
    Accepted Date: 9 March 2020

  • Quinoline is an important class of heterocyclic compounds, and research on the synthesis of quinoline compounds has attracted much attention. It is simple and efficient to prepare substituted quinolines though direct C-H bond functionalization of quinolines. However, the C5-selective C-H bond functionalization of quinolines is still a challenge. Most current methods are achieved by transition metal catalysis. The reactions under transition metal-free conditions are desired. In this paper, the recent advance of C5 C-H bond functionalization of quinolines under transition-metal free conditions is reviewed according to the types of bond (C-X, C-N, C-S, C-O and C-C) formation. And the research status and current problems in this field are also summarized.
  • 加载中
    1. [1]

      (a) Kaur K, Jain M, Reddy R P, et al. Eur. J. Med. Chem., 2010, 45(8): 3245~3264; (b) Colomb J, Becker G, Fieux S, et al. J. Med. Chem., 2014, 57(9): 3884~3890; (c) Hughes C C, MacMillan J B, Gaudêncio S P, et al. Angew. Chem. Int. Ed., 2009, 48(4): 725~727; (d) Pan E, Oswald N W, Legako A G, et al. Chem. Sci., 2013, 4(1): 482~488; (e) Pandey R R, Srivastava A, Malasoni R, et al. Bioorg. Med. Chem. Lett., 2012, 22(17): 5735~5738; (f) Vandekerckhove S, Müller C, Vogt D, et al. Bioorg. Med. Chem. Lett., 2013, 23(1): 318~322; (g) Vandekerckhove S, Tran H G, Desmet T, et al. Bioorg. Med. Chem. Lett., 2013, 23(16): 4641~4643; (h) Michael J P. Nat. Prod. Rep., 2008, 25(1): 166~187.

    2. [2]

    3. [3]

      (a) Berman A M, Lewis J C, Bergman R G, et al. J. Am. Chem. Soc., 2008, 130(45): 14926~14927; (b) Tobisu M, Hyodo I, Chatani N. J. Am. Chem. Soc., 2009, 131(34): 12070~12071; (c) Zhao D, Wang W, Yang F, et al. Angew. Chem. Int. Ed., 2009, 48(18): 3296~3300; (d) Ren X, Wen P, Shi X, et al. Org. Lett., 2013, 15(20): 5194~5197; (e) Sun K, Wang X, Liu L, et al. ACS Catal., 2015, 5(12): 7194~7198.

    4. [4]

      (a) Ye M, Gao G L, Edmunds A J F, et al. J. Am. Chem. Soc., 2011, 133(47): 19090~19093; (b) Ye M, Gao G L, Yu J Q. J. Am. Chem. Soc., 2011, 133(18): 6964~6967; (c) Sun K, Lv Y, Wang J, et al. Org. Lett., 2015, 17(18) 4408~4411.

    5. [5]

      (a) Tsai C, Shih W, Fang C, et al. J. Am. Chem. Soc., 2010, 132(34): 11887~11889; (b) Nakao Y, Yamada Y, Kashihara N, et al. J. Am. Chem. Soc., 2010, 132(39): 13666~13668; (c) Oshima K, Ohmura T, Suginome M. J. Am. Chem. Soc., 2011, 133(19): 7324~7327; (d) Hyodo I, Tobisu M, Chatani N. Chem. Asian J., 2012, 7(6): 1357~1365; (e) Chen Q, Jourdin X M D, Knochel P. J. Am. Chem. Soc., 2013, 135(13): 4958~4961; (f) Yamamoto S, Saga Y, Andou T, et al. Adv. Synth. Catal., 2014, 356(2~3): 401~405.

    6. [6]

      (a) Kwak J, Kim M, Chang S. J. Am. Chem. Soc., 2011, 133(11) 3780~3787; (b) Konishi S, Kawamorita S, Iwai T, et al. Chem. Asian J., 2014, 9(2): 434~438.

    7. [7]

      (a) Iwai T, Sawamura M. ACS Catal., 2015, 5(9): 5031~5040; (b) Khan B, Dutta H S, Koley D. Asian J. Org. Chem., 2018, 7, 1270~1297.

    8. [8]

      Suess A M, Ertem M Z, Cramer C J, et al. J. Am. Chem. Soc., 2013, 135(26):9797~9804. 

    9. [9]

      Cong X, Zeng X. Org. Lett., 2014, 16(14):3716~3719. 

    10. [10]

      Zhu L, Qiu R, Cao X, et al. Org. Lett., 2015, 17(22):5528~5531. 

    11. [11]

      (a) Qiao H, Sun S, Yang F, et al. Org. Lett., 2015, 17(24): 6086~6089; (b) Liang H, Jiang K, Ding W, et al. Chem. Commun., 2015, 51(95): 16928~16931; (c) Wei J, Jiang J, Xiao X, et al. J. Org. Chem., 2016, 81(3): 946~955; (d) Zhu X, Zhang P, Ajitha M J, et al. Chem. Asian J., 2016, 11(6): 882~892.

    12. [12]

      (a) Sun M M, Sun S Y, Qiao H J, et al. Org. Chem. Front., 2016, 3(12): 1646~1650; (b) Qiao H J, Sun S Y, Zhang Y, et al. Org. Chem. Front., 2017, 4(10): 1981~1986

    13. [13]

      (a) Guo H, Chen M, Jiang P, et al. Tetrahedron 2015, 71(1): 70~76; (b) Xu J, Zhu X, Zhou G, et al. Org. Biomol. Chem., 2016, 14(11): 3016~3021; (c) Qiao H J, Sun S Y, Yang F, et al. Adv. Synth. Catal., 2017, 359(11): 1976~1980.

    14. [14]

    15. [15]

      Wang Y, Wang Y, Jiang K, et al. Org. Biomol. Chem., 2016, 14(43):10180~10184. 

    16. [16]

      Jiao J Y, Mao Y J, Feng A W, et al. Tetrahedron, 2017, 73(11):1482~1488. 

    17. [17]

      Chen X X, Wang J X, et al. Synlett, 2017, 28, 1840~1844. 

    18. [18]

      Qiao L, Cao X T, Chai K J, et al. Tetrahed. Lett., 2018, 59(23):2243~2247. 

    19. [19]

      Sen C, Sahoo T, Ghosh S C. Chemistry Select, 2017, 2(9):2745~2749.

    20. [20]

    21. [21]

      Chen J, Wang T, Liu Y, et al. Org. Chem. Front., 2017, 4(4):622~626. 

    22. [22]

      Li Y, Zhu L Z, Cao X, et al. Adv. Synth. Catal., 2017, 359(1):1~11.

    23. [23]

      Dutta H S, Khan B, Raziullah A A K, et al. Chemistry Select, 2017, 2(22):6488~6492.

    24. [24]

      Huang B B, Zhao Y T, Yang C, et al. Org. Lett., 2017, 19(14):3799~3802. 

    25. [25]

      Motati D R, Uredi D, Watkins E B. Chem. Sci., 2018, 9(7):1782~1788. 

    26. [26]

      Zhang Y C, Wen C X, Li J Z. Org. Biomol. Chem., 2018, 16(11):1912~1920. 

    27. [27]

      Chen H, Li P H, Wang M, et al. Eur. J. Org. Chem., 2018, (18):2091~2097.

    28. [28]

      Wang Y, Wang Y, Guo Z Y, et al. Asian J. Org. Chem., 2016, 5(12):1438~1441. 

    29. [29]

      Ji D Z, He X, Xu Y Z, et al. Org. Lett., 2016, 18(18):4478~4481. 

    30. [30]

      Samanta S, Ravi C, Rao S N, et al. Org. Biomol. Chem., 2017, 15(45):9590~9594. 

    31. [31]

      Tang R J, Milcent T, Crousse B. Eur. J. Org. Chem., 2017, (32):4753~4757.

    32. [32]

      Wang Y, Wang Y, Zhang Q, et al. Org. Chem. Front., 2017, 4(4):514~518. 

    33. [33]

      Shen C, Yang M, Xu J, et al. RSC Adv., 2017, 7(78):49436~49439. 

    34. [34]

      Begum Z, Bhavani G, Sridhar B. Synthesis, 2018, 50(20):4089~4096. 

    35. [35]

      Thrimurtulu N, Dey A, Pal K, et al. ChemistrySelect, 2017, 2(24):7251~7254. 

    36. [36]

      Mondal S, Hajra A, J. Org. Chem., 2018, 83(18):11392~11398. 

    37. [37]

      Yao X H, Weng X, Wang K X, et al. Green Chem., 2018, 20(11):2472~2476. 

    38. [38]

      Wu Z Y, He Y Q, Ma C W, et al. Asian J. Org. Chem., 2016, 5(6):724~728. 

    39. [39]

      Xu J, Qiao L, Ying B, et al. Org. Chem. Front., 2017, 4(6):1116~1120. 

    40. [40]

      Arockiam P B, Guillemard L, Wencel-Delord J. Adv. Synth. Catal., 2017, 359(15):2571~2579. 

    41. [41]

      Zhao L, Li P, Xie X, et al. Org. Chem. Front., 2018, 5(10):1689~1697. 

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    3. [3]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    11. [11]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    12. [12]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    13. [13]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    14. [14]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    17. [17]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(9)
  • Abstract views(1171)
  • HTML views(298)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return