Citation: ZHANG Hong-guang, WANG Wen-tai, FENG Li-juan, LI Chun-hu, WANG Liang. Effect of hydrothermal pH value on composition and morphology of bismuth oxybromide and their photocatalytic performance[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 582-589. shu

Effect of hydrothermal pH value on composition and morphology of bismuth oxybromide and their photocatalytic performance

  • Corresponding author: WANG Liang, wangliang_good@163.com
  • Received Date: 12 February 2019
    Revised Date: 4 April 2019

    Fund Project: The project was supported by the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering 2018-K21The project was supported by the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering (2018-K21)

Figures(11)

  • A series of bismuth oxybromide photocatalysts were fabricated via a one-step hydrothermal method through pH value adjustment. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence spectroscopy (PL). The photocatalytic activities of the as-prepared samples were examined by degradation of Rhodamine B (RhB), methyl orange (MO) and phenol. The results indicate that the B9 displayed the highest photocatalytic activities. The enhanced photocatalytic activity can be attribute to enhanced absorption in the visible region and the decreased recombination efficiency of photogenerated charge carriers. The effect of hydrothermal pH value on the composition and morphology was explored and a synthesis process of bismuth oxybromide was proposed.
  • 加载中
    1. [1]

      WANG H, YONG D Y, CHEN S C, JIANG S L, ZHANG X D, SHAO W, ZHANG Q, YAN W S, PAN B C, XIE Y. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation[J]. J Am Chem Soc, 2018,140(5):1760-1766. doi: 10.1021/jacs.7b10997

    2. [2]

      YU X, SHI J J, WANG L, WANG W T, BIAN J J, FENG L J, LI C H. A novel AuNPs-loaded MoS2/RGO composite for efficient hydrogen evolution under visible light[J]. Mater Lett, 2016,182:125-128. doi: 10.1016/j.matlet.2016.06.095

    3. [3]

      YUE D T, ZHANG T Y, KAN M, QIAN X F, ZHAO Y X. Highly photocatalytic active thiomolybdate [Mo3S13] 2-clusters/BiOBr nanocomposite with enhanced sulfur tolerance[J]. Appl Catal B:Environ, 2016,183:1-7. doi: 10.1016/j.apcatb.2015.10.020

    4. [4]

      ZHAO K, ZHANG L Z, WANG J J, LI Q X, HE W W, YIN J J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets[J]. J Am Chem Soc, 2013,135(42):15750-15753. doi: 10.1021/ja4092903

    5. [5]

      LIAO C X, MA Z J, CHEN X F, HE X, QIU J R. Controlled synthesis of bismuth oxyiodide toward optimization ofphotocatalytic performance[J]. Appl Surf Sci, 2016,387:1247-1256. doi: 10.1016/j.apsusc.2016.06.140

    6. [6]

      GUO W, QIN Q, GENG L, WANG D, GUO Y H, YANG Y X. Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt-BiOBr heterostructures[J]. J Hazard Mater, 2016,308:374-385. doi: 10.1016/j.jhazmat.2016.01.077

    7. [7]

      LIU X Q, CAI L. Novel indirect Z-scheme photocatalyst of Ag nanoparticles and polymer polypyrrole co-modified BiOBr for photocatalytic decomposition of organic pollutants[J]. Appl Surf Sci, 2018,445:242-254. doi: 10.1016/j.apsusc.2018.03.178

    8. [8]

      YU Z Y, DETLEF B, RALF D, SONG L, LU L Q. Photocatalytic degradation of azo dyes by BiOX(X=Cl, Br)[J]. J Mol Catal A:Chem, 2012,365:1-7. doi: 10.1016/j.molcata.2012.07.001

    9. [9]

      XU J, LI L, GUO C S, ZHANG Y, WANG S F. Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation[J]. Chem Eng J, 2013,221:230-237. doi: 10.1016/j.cej.2013.01.081

    10. [10]

      YE L Q, SU Y R, JIN X L, XIE H Q, CAO F P, GUO Z. Which affect the photoreactivity of BiOBr single-crystalline nanosheets with different hydrothermal pH value:Size or facet?[J]. Appl Surf Sci, 2014,311:585-863.  

    11. [11]

      YU H G, LRIE H S, HASHIMOTO K. Conduction band energy level control of titanium dioxide:Toward an efficient visible-light-sensitive photocatalyst[J]. J Am Chem Soc, 2010,132:6898-6899. doi: 10.1021/ja101714s

    12. [12]

      WANG H T, SHI M S, YANG H F, CHANG N, ZHANG H, LIU Y P, LU M C, AO D, CHU D Q. Template-free synthesis of nanosliced BiOBr hollow microspheres with high surface area and efficient photocatalytic activity[J]. Mater Lett, 2018,222:164-167. doi: 10.1016/j.matlet.2018.03.179

    13. [13]

      DI J, XIA J X, JI M X, WANG B, YIN S, ZHANG Q, CHEN Z G, LI H M. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight[J]. Appl Catal B:Environ, 2016,183:254-262. doi: 10.1016/j.apcatb.2015.10.036

    14. [14]

      MENG X C, LI Z Z, CHEN J, XIE H W, ZHANG Z S. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles[J]. Appl Surf Sci, 2018,433:76-87. doi: 10.1016/j.apsusc.2017.09.103

    15. [15]

      LI R P, REN H J, MA W H, HONG S M, WU L, HUANG Y P. Synthesis of BiOBr microspheres with ethanol as self-template and solvent with controllable morphology and photocatalytic activity[J]. Catal Commun, 2018,106:1-5. doi: 10.1016/j.catcom.2017.11.015

    16. [16]

      LI H P, HU T X, LI J Q, SONG S, DU N, ZHANG R J, HOU W G. Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets[J]. Appl Catal B:Environ, 2016,182:431-438. doi: 10.1016/j.apcatb.2015.09.050

    17. [17]

      LU L, ZHOU M Y, YIN L, ZHOU G W, JIANG T, WAN X K, SHI H X. Tuning the physicochemical property of BiOBr via pH adjustment:Towards an efficient photocatalyst for degradation of bisphenol A[J]. J Mol Catal A:Chem, 2016,423:379-385. doi: 10.1016/j.molcata.2016.07.017

    18. [18]

      WANG L, JIA T F, LI C H, FENG L J. Hydrothermal synthesis of BiOBr/semi-coke composite as anemerging photo-catalyst for nitrogen monoxide oxidation undervisible light[J]. Catal Today, 2016,264:257-260. doi: 10.1016/j.cattod.2015.07.008

    19. [19]

      WANG J L, YU Y, ZHANG L Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4 Br under visible light[J]. Appl Catal B:Environ, 2013,136/137:112-211. doi: 10.1016/j.apcatb.2013.02.009

    20. [20]

      LIU X Z, JIANG X L, CHEN Z Q, YU J X, HE Y M. Preparation of Bi3O4 Br/BiOCl composite via ion-etching method and its excellent photocatalytic activity[J]. Mater Lett, 2018,210:194-198. doi: 10.1016/j.matlet.2017.08.134

    21. [21]

      YU X, WU P W, QI C X, SHI J J, FENG L J, LI C H, WANG L. Ternary-component reduced graphene oxide aerogel constructed by g- C 3N4/BiOBr heterojunction and graphene oxide with enhanced photocatalytic performance[J]. J Alloys Compd, 2017,729:162-170. doi: 10.1016/j.jallcom.2017.09.175

    22. [22]

      HU T P, YANG Y, DAI K, ZHANG J F, LIANG C H. A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. Appl Surf Sci, 2018,456:473-481. doi: 10.1016/j.apsusc.2018.06.186

    23. [23]

      YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci, 2017,396:1775-1782. doi: 10.1016/j.apsusc.2016.11.219

    24. [24]

      HAN Q F, ZHANG K K, ZHANG J, GONG S, WANG X, ZHU J W. Effect of the counter ions on composition and morphology of bismuth oxyhalides and their photocatalytic performance[J]. Chem Eng J, 2016,299:217-226. doi: 10.1016/j.cej.2016.04.048

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    3. [3]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    4. [4]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    5. [5]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    6. [6]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    7. [7]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    8. [8]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    9. [9]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    10. [10]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    11. [11]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    12. [12]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    13. [13]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    14. [14]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    15. [15]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    16. [16]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    17. [17]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    18. [18]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    19. [19]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    20. [20]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

Metrics
  • PDF Downloads(7)
  • Abstract views(504)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return