Citation: YANG Wen-shen, LIN Jun-heng, YIN Xiu-li, WU Chuang-zhi. Release of HCl and H2S during gasification of refuse derived-fuel chars[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 121-128. shu

Release of HCl and H2S during gasification of refuse derived-fuel chars

  • Corresponding author: YIN Xiu-li, xlyin@ms.giec.ac.cn
  • Received Date: 7 September 2018
    Revised Date: 23 November 2018

    Fund Project: Science and Technology Program of Guangzhou 201707010242the Guangdong Natural Science Foundation 2017B030308002The project was supported by the National Key R&D Program of China (2016YFE0203300), the Guangdong Natural Science Foundation (2017B030308002) and Science and Technology Program of Guangzhou (201707010242)the National Key R&D Program of China 2016YFE0203300

Figures(10)

  • Using a horizontal tubular reactor together with chemical adsorption, release characteristics of corrosive gases, viz., HCl and H2S, during steam and CO2 gasification process of aged and normal refuse derived-fuels char (ARC and NRC) were investigated. Effects of gasification temperature, type and flow rate of gasification medium on their release behaviors were examined. In H2O gasification at 950℃ the carbon gasification rates, HCl and H2S yields of ARC are 66.1%, 100% and 74.9%, respectively, and those are 77.8%, 100% and 2.9% in CO2 gasification, respectively. The carbon gasification rates, HCl and H2S yields of NRC in H2O gasification are 98.8%, 100% and 53.7%, and those are 100%, 96.2% and 10.3% in CO2 gasification, respectively. The release characteristics of HCl and H2S are investigated with different flow rates of H2O and CO2 in the NRC gasification. HCl and H2S yields of NRC increase with increasing flow rate of H2O, but the promoting effect can be ignored when H2O/C is ≥ 3.3. HCl yield of NRC increases but H2S yield decreases with increasing flow rate of CO2.
  • 加载中
    1. [1]

      "The 13th Five-Year Plan" construction planning for harmless treatment facilities of national municipal waste[R]. Beijing: Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2016.

    2. [2]

      ZHAO You-cai, CHAI Xiao-li, NIU Dong-jie. Characteristics of aged refuse in closed refuse landfill in Shanghai[J]. J Tongji Univ (Nat Sci)), 2006,34(10):1360-1364. doi: 10.3321/j.issn:0253-374X.2006.10.017

    3. [3]

      ROTHEUT M, QUICKER P. Energetic utilisation of refuse derived fuels from landfill mining[J]. Waste Manage, 2017,62:101-117. doi: 10.1016/j.wasman.2017.02.002

    4. [4]

      LI G K, HOU F, GUO Z, YAO G, SANG N. Analyzing nutrient distribution in different particle-size municipal aged refuse[J]. Waste Manage, 2011,31(11):2203-2207. doi: 10.1016/j.wasman.2011.06.010

    5. [5]

      COMMISSION E. Council Directive 99/31/EC of 26 April 1999 on the landfill of waste (Landfill Directive)[EB]. 1999.

    6. [6]

      BOSMANS A, VANDERREYDT I, GEYSEN D, HELSEN L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining:A technology review[J]. J Clean Prod, 2013,55(14):10-23.  

    7. [7]

      ROTHEUT M, QUICKER P. Energetic utilization of refuse derived fuels from landfill mining[J]. Waste Mange, 2017,62:101-117. doi: 10.1016/j.wasman.2017.02.002

    8. [8]

      CHALERMCHAROENRAT S, LAOHALIDANOND K, KERDSUWAN S. Optimization of combustion behavior and producer gas quality from reclaimed landfill through highly densify RDF-gasification[J]. Energy Procedia, 2015,79:321-326. doi: 10.1016/j.egypro.2015.11.496

    9. [9]

      YUAN Hao-ran, LU Tao, XIONG Zu-hong, HUANG Hong-yu, KOBAYASHI Noriyuki, CHEN Yong, LI Zhi-qiang. Advance in pyrolysis and gasification of municipal solid waste study[J]. Chem Ind Eng Prog, 2012,31(2):421-427.  

    10. [10]

      HJELMAR O. Disposal strategies for municipal solid waste incineration residues[J]. J Hazard Mater, 1996,47(1/3):345-368.  

    11. [11]

      MAKEN S, JANG S H, PARK J W, PARK J W, SONG H C, LEE S, CHANG E H. Vitrification of MSWI fly ash using Brown's gas and fate of heavy metals[J]. J Sci Ind Res, 2005,64(3):198-204.

    12. [12]

      TUPPURAINEN K, HALONEN I, RUOKOJARVI P, TARHANEN J, RUUSKANEN J. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms:A review[J]. Chemosphere, 1998,36(7):1493-1511. doi: 10.1016/S0045-6535(97)10048-0

    13. [13]

      SENNECA O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels[J]. Fuel Process Technol, 2007,88(1):87-97. doi: 10.1016/j.fuproc.2006.09.002

    14. [14]

      SHUIT S H, TAN K T, LEE K T, KAMARUDDIN A H. Oil palm biomass as a sustainable energy source:A Malaysian case study[J]. Energy, 2009,34(9):1225-1235. doi: 10.1016/j.energy.2009.05.008

    15. [15]

      PAN T J, GESMUNDO F, NIU Y. Corrosion behavior of three iron-based model alloys in reducing atmospheres containing HCl and H2S at 600℃[J]. Corros Sci, 2007,49(3):1362-1377. doi: 10.1016/j.corsci.2006.06.014

    16. [16]

      HU H, FANG Y, LIU H, YU R, LUO G, LIU W, LI A, YAO H. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014,97(1):102-107.  

    17. [17]

      YUAN G, CHEN D, YIN L, WANG Z, ZHAO L, WANG J Y. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor[J]. Waste Manage, 2014,34(6):1045-1050. doi: 10.1016/j.wasman.2013.08.021

    18. [18]

      ZHU H M, JIANG X G, YAN J H, CHI Y, CEN K F. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. J Anal Appl Pyrolysis, 2008,82(1):1-9. doi: 10.1016/j.jaap.2007.11.011

    19. [19]

      LANE D J, VAN EYK P J, ASHMAN P J, KWONG C W, DE NYS R, ROBERTS D A, COLE A J, LEWIS D M. Release of Cl, S, P, K, and Na during thermal conversion of algal biomass[J]. Energy Fuels, 2015,29(4):2542-2554. doi: 10.1021/acs.energyfuels.5b00279

    20. [20]

      LIN Jun-heng, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Release of HCl and H2S during pyrolysis of aged refuse derived-fuels[J]. J Fuel Chem Technol, 2018,46(2):152-159. doi: 10.3969/j.issn.0253-2409.2018.02.004

    21. [21]

      RUAN Song-bin. Discussion about means and process of country towns domestic waste treatment in Guangxi[J]. Environ Sanit Eng, 2008,16(1):27-30. doi: 10.3969/j.issn.1005-8206.2008.01.008

    22. [22]

      HU H, FANG Y, LIU H, YU R, LUO G, LIU W, LI A, YAO H. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014,97(1):102-107.  

    23. [23]

      YU J, SUN L, MA C, QIAO Y, YAO H. Thermal degradation of PVC:A review[J]. Waste Manage, 2016,48:300-314. doi: 10.1016/j.wasman.2015.11.041

    24. [24]

      DU Yao, FANG Yuan, SHEN Dong-sheng, LONG Yu-yang. Review on pollution control technologies of hydrogen sulfide odor in landfill[J]. Trans Chin Soc Agric Eng, 2015,31(1):269-275.  

    25. [25]

      RECARI J, BERRUECO C, ABELLÍ S, MONTANÉ D, FARRIOL X. Gasification of two solid recovered fuels (SRFs) in a lab-scale fluidized bed reactor:Influence of experimental conditions on process performance and release of HCl, H2S, HCN and NH3[J]. Fuel Process Technol, 2016,142:107-114. doi: 10.1016/j.fuproc.2015.10.006

    26. [26]

      DUAN L, ZHAO C, ZHOU W, QU C, CHEN X. Investigation on coal pyrolysis in CO2 atmosphere[J]. Energy Fuels, 2009,23(7):3826-3830. doi: 10.1021/ef9002473

    27. [27]

      FRIGGE L, ELSERAFI G, STROHLE J, EPPLE B. Sulfur and chlorine gas species formation during coal pyrolysis in nitrogen and carbon dioxide atmosphere[J]. Energy Fuels, 2016,30(9):7713-7720. doi: 10.1021/acs.energyfuels.6b01080

  • 加载中
    1. [1]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    2. [2]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    3. [3]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    4. [4]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    12. [12]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    13. [13]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    14. [14]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    15. [15]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    18. [18]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

Metrics
  • PDF Downloads(4)
  • Abstract views(2345)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return