Citation: LIU Shuai, LIU Jin-bo, LI Xu-he, ZHANG Jian, YAN Jing-sen, LIANG Fei-xue, WANG Yan-juan. Preparation of WO3/g-C3N4 heterojunction catalyst and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 852-862. shu

Preparation of WO3/g-C3N4 heterojunction catalyst and its oxidative desulfurization performance

  • Corresponding author: ZHANG Jian, zhangjian_lnpu@163.com
  • Received Date: 26 March 2019
    Revised Date: 23 April 2019

    Fund Project: the Natural Science Foundation of Liaoning Province 20170540475The project was supported by the Natural Science Foundation of Liaoning Province (20170540475) and Pilot Program of University of Liao-ning Innovation and Education Reform

Figures(14)

  • Graphite phase carbon nitride (g-C3N4) and metal oxide tungsten trioxide (WO3) heterojunction nanocomposites WO3/g-C3N4 were prepared by roasting from urea and ammonium tungstate. The physical and chemical properties of the catalysts were investigated by means of XRD, UV-vis, SEM, PL and XPS. The characterization indicated that WO3 and g-C3N4 interacted well in the catalysts, and electron transfer occurred between them, which ensured high oxidative desulfurization activity of WO3/g-C3N4. Supported catalyst WO3/g-C3N4 was prepared using WO3 as the support. Isopropyl peroxide was used as the oxidant to investigate the catalyst performance in oxidative desulfurization of the simulated oil. Under the reaction conditions of 80℃ and the content ratio of O/S at 3, a 72.79% of dibenzothiophene (DBT) conversion could be achieved after 180 min. It was fund that the superoxide free radicals (·O2-), electron (e-) and hydroxyl free radicals (·OH) promoted the reaction rate through free radical capture experiment and the reaction mechanism was proposed.
  • 加载中
    1. [1]

      JIANG Ke-wang. Composite modification and photocatalytic properties of graphite phase carbon nitride (g-C3N4)[D]. Nanjing: Nanjing University of Science and Technology, 2016. 

    2. [2]

      WANG Xin-bo, LI Xiu-ping, ZHAO Rong-xiang. Synthesis of EMIES/p-TsOH low eutectic solvent and its oxidative desulfurization performance[J]. J Fuel Chem Technol, 2019,47(1):104-112. doi: 10.3969/j.issn.0253-2409.2019.01.014 

    3. [3]

      LI Xiu-ping, ZHAO Rong-xiang, XING Peng-fei. Preparation of NiWO4/g-C3N4 and its oxidative desulfurization performance in ionic liquid[J]. J Fuel Chem Technol, 2017,45(11):1340-1348. doi: 10.3969/j.issn.0253-2409.2017.11.009 

    4. [4]

      CHAN K, JUNG J L, JUN S B, KYUNGIL C, SANG H M. Hydrodesulfurization of DBT, 4-MDBT, and 4, 6-DMDBT on fluorinated CoMoS/Al2O3 catalysts[J]. Appl Catal A:Gen, 2000,200(1/2):233-242.

    5. [5]

      LIU You-chang, WANG Liang. Preparation and visible light catalytic activity of g-C3N4/BiOBr heterojunction photocatalyst[J]. J Fuel Chem Technol, 2018,46(9):1146-1152. doi: 10.3969/j.issn.0253-2409.2018.09.014 

    6. [6]

      WANG X C, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009,8(1):76-80.

    7. [7]

      KROKE E, SCHWARZ M, HORATH-BORDON E, KROLL P, NOLL B, NORMAN A D. Tri-s-triazine derivatives. Part Ⅰ. From trichloro-tri-triazine to graphitic C3N4 structures[J]. New J Chem, 2002,26(5):508-512. doi: 10.1039/b111062b

    8. [8]

      LI Xiu-ping, ZHAO Rong-xiang, SU Jian-xun, AI Dong. Preparation of functional nitride of phosphotungstic acid and its oxidative desulfurization[J]. J Fuel Chem Technol, 2015,43(7):870-875. doi: 10.3969/j.issn.0253-2409.2015.07.013 

    9. [9]

      YAN Jun-ping, ZHANG Zhong-tai, TANG Zi-long, LUO Shao-hua. Progress in photocatalysis of semiconductor nanocomposites[J]. J Inorg Mater, 2003,18(5):980-988. doi: 10.3321/j.issn:1000-324X.2003.05.003

    10. [10]

      TONG H X, CHEN Q Y, YIN Z L, HU H P, WU D X, YANG Y H. Preparation characterization and photo-catalytic behavior of WO3-TiO2 catalysts with oxygen vacancies[J]. Trans Nonferrous Met Soc China, 2009,19(6):1483-1488. doi: 10.1016/S1003-6326(09)60056-X

    11. [11]

      SUN J X, YUAN Y P, QIU L G, JIANG X, XIE A J, SHEN Y H, ZHU J F. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light[J]. Dalton Trans, 2012,41(22):6756-6763. doi: 10.1039/c2dt12474b

    12. [12]

      YAN H J, YANG H X. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation[J]. J Alloys Compd, 2011,509:L26-L29. doi: 10.1016/j.jallcom.2010.09.201

    13. [13]

      XING Peng-fei, LI Xiu-ping, JIA Bao-jun, ZHAO Rong-xiang. Preparation of MoO3/g-C3N4 catalyst and its oxidation removal of sulfide in simulated oil[J]. Chem Ind Eng Prog, 2016,35(12):3934-3941.  

    14. [14]

      MIAO X L, SHEN X P, WU J J, JI Z Y, WANG J H, KONG L R, LIU M M, SONG C S. Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/Ag Br with enhanced visible light photocatalytic activity[J]. Appl Catal A:Gen, 2017,539:104-113. doi: 10.1016/j.apcata.2017.04.009

    15. [15]

      HUANG L Y, XU H, LI Y P, LI H M, CHENG X N, XIA J X, XU Y G, CAI G B. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Trans, 2013,42(24):8606-8616. doi: 10.1039/c3dt00115f

    16. [16]

      ZHAO Z G, MIYANUCHI M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts[J]. Angew Chem-Int Ed, 2008,47(37):7051-7055. doi: 10.1002/anie.v47:37

    17. [17]

      KHALID N R, AHMED E, HONG Z L, AHMAD M. Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites[J]. Appl Surf Sci, 2012,263:254-259. doi: 10.1016/j.apsusc.2012.09.039

    18. [18]

      AMOOZADEH A, RAHMANI S. Nano-WO3-supported sulfonic acid:New efficient and high reusable heterogeneous nanocatalyst[J]. J Mol Catal A:Chem, 2015,396:96-107. doi: 10.1016/j.molcata.2014.09.020

    19. [19]

      GUI Ming-sheng, WANG Peng-fei, YUAN Dong, YANG Yi-kun. Preparation of Bi2WO6/g-C3N4 composite catalyst and its visible photocatalytic performance[J]. J Inorg Chem, 2013,29(10):2057-2064.  

    20. [20]

      GAO Y, JIANG P, LIU D F, YUAN H J, YAN X Q, ZHOU Z P, WANG J X, SONG L, LIU L F, ZWOU W Y, WANG C Y, XIE S S. Synthesis, characterization and self-assembly of silver nanowires[J]. Chem Phys Lett, 2003,380(1):146-149.

    21. [21]

      CHAI B, PENG T, MAO J, LI K, ZAN L. Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation[J]. Phys Chem Chem Phys, 2012,14(48):16745-16752. doi: 10.1039/c2cp42484c

    22. [22]

      YANG Y X, GUO Y N, LIU F Y, YUAN X, GUO Y H, ZHANG S Q, GUO W, HUO M X. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst[J]. Appl Catal B:Environ, 2013,142/143:828-837. doi: 10.1016/j.apcatb.2013.06.026

    23. [23]

      ERDEM B, HUNSICKER R A, SIMMONS G W, SUDOL E D, DIMONIE V L, El-AASSER M S. XPS and FT-IR surface characterization of TiO2 particles used polymer encapsulation[J]. Langmuir, 2001,17(9):2664-2669. doi: 10.1021/la0015213

    24. [24]

      XUN S H, ZHU W S, CHANG Y H, LI H P, ZHANG M, JIANG W, ZHENG D, QIN Y J, LI H M. Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels[J]. Chem Eng J, 2016,288:608-617. doi: 10.1016/j.cej.2015.12.005

    25. [25]

      CHEN K, ZHANG X M, YANG X F, JIAO M G, ZHOU Z, ZHANG M H, WANG D H, BU X H. Electronic structure of heterojunction MoO2/g-C3N4 catalyst for oxidative desulfurization[J]. Appl Catal B:Environ, 2018,238:263-273. doi: 10.1016/j.apcatb.2018.07.037

    26. [26]

      ZHANG Li-ming, WU Lei, SHAO Yun, LI Lei. Study on the properties of Cu-g-C3N4/WO3 degraded tetracycline[J]. J Synth Cryst, 2018,47(6):1128-1135. doi: 10.3969/j.issn.1000-985X.2018.06.007

    27. [27]

      WANG Li, ZHAO Hui. Visible light catalytic degradation of methylene blue by WO3/N TiO2 heterogeneous[J]. Ind Water Treat, 2016,36(11):78-81.  

    28. [28]

      LI X F, ZHANG J, SHEN L H, MA Y M, LEI W W, CUI Q L, ZOU G T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine[J]. Appl Phys A:Mater, 2009,94(2):387-392. doi: 10.1007/s00339-008-4816-4

    29. [29]

      LIU H, JIN Z T, XU Z Z, ZHANG Z, AO D. Fabrication of ZnIn2S4-g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants[J]. RSC Adv, 2015,5(119):97951-97961. doi: 10.1039/C5RA17028A

    30. [30]

      KATSUMATA H, TACHI Y, SUZUKI T, KANECO S. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. RSC Adv, 2014,4(41):21405-21409. doi: 10.1039/C4RA02511C

    31. [31]

      MA S S, XUE J J, ZHOU Y M, ZHANG Z W. Facile fabrication of mpg-C3N4/TiO2 heterojunction photocatalyst with enhanced visible light photoactivity toward organic pollutant degradation[J]. RSC Adv, 2015,5(80):64976-64982. doi: 10.1039/C5RA10447E

    32. [32]

      XIAO X, ZHONG H, ZHENG C X, LU M L, ZUO X X, NAN J M. Deep oxidative desulfurization of dibenzothiophene using a flower-like WO3·H2O catalyst in an organic biphasic system[J]. Chem Eng J, 2016,304:908-916. doi: 10.1016/j.cej.2016.07.022

    33. [33]

      BIAN Zhen-feng, RUAN Da-ming, LI He-xing. Effect of Pt loading on photocatalytic REDOX of TiO2[J]. Chin J Sci Technol, 2016,11(18):2091-2095. doi: 10.3969/j.issn.2095-2783.2016.18.013

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    4. [4]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    8. [8]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    9. [9]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    10. [10]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    11. [11]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    12. [12]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    13. [13]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    14. [14]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    17. [17]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    18. [18]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    19. [19]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    20. [20]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

Metrics
  • PDF Downloads(6)
  • Abstract views(970)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return