Citation: Wang Qiang, Sun Jing. Transition-Metal Catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2[J]. Chemistry, ;2018, 81(4): 312-318, 379. shu

Transition-Metal Catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2

  • Corresponding author: Sun Jing, sunjing@lnpu.edu.cn
  • Received Date: 11 December 2017
    Accepted Date: 29 January 2018

Figures(2)

  • The chemical conversion of carbon dioxide, a non-toxic, non-flammable, abundant and cheap renewable C1 resource, into high value-added organic compounds has become an important strategy for sustainable development. Among various transformations, CO2 as the carboxylating agent for the synthesis of carboxylic acids and derivatives has attracted much attention in the field of activation and conversion of CO2. This review summarizes the progress in carboxylation of unsaturated hydrocarbons with CO2 catalyzed by transition-metal catalysis in recent years.
  • 加载中
    1. [1]

      K Huang, C L Sun, Z J Shi. Chem. Soc. Rev., 2011, 40(5):2435~2452. 

    2. [2]

      H Arakawa, M Aresta, J N Armor et al. Chem. Rev., 2001, 101(4):953~996. 

    3. [3]

      I Omae. Coord. Chem. Rev., 2012, 256:1384~1405. 

    4. [4]

      M Cokoja, C Bruckmeier, B Rieger et al. Angew. Chem. Int. Ed., 2011, 50(37):8510~8537. 

    5. [5]

      Y Tsuji, T Fujihara. Chem. Commun., 2012, 48(80):9956~9964. 

    6. [6]

      Z Z Yang, L N He, J Gao et al. Energ. Environ. Sci., 2012, 5(5):6602~6639. 

    7. [7]

      K Huang, C L Sun, Z J Shi. Chem. Soc. Rev., 2011, 40(5):2435~2452. 

    8. [8]

      T Sakakura, J C Choi, H Yasuda. Chem. Rev., 2007, 107(6):2365~2387. 

    9. [9]

      T Sakakura, K Kohon. Chem. Commun., 2009, (11):1312~1330. 

    10. [10]

      M Mikkelsen, M Jørgensena, F Krebs. C. Energ. Environ. Sci., 2010, 3(1):43~81. 

    11. [11]

      Y Izumi. Coord. Chem. Rev., 2013, 257(1):171~186. 

    12. [12]

       

    13. [13]

       

    14. [14]

      H F Jiang, J W Zhao, A Z Wang. Synthesis, 2008(05):763~769. 

    15. [15]

      H F Jiang, A Z Wang, H L Liu et al. Eur. J. Org. Chem., 2008(13):2309~2312. 

    16. [16]

      L Ouyang, X D Tang, H T He et al. Adv. Synth. Catal., 2015, 357(11):2556~2565. 

    17. [17]

      B Yu, B B Cheng, W Q Liu et al. Adv. Synth. Catal., 2016, 358(1):90~97. 

    18. [18]

       

    19. [19]

      K Inamoto, N Asano, K Kobayashi et al. Org. Biomol. Chem., 2012, 10(8):1514~1516. 

    20. [20]

      B Yu, Z F Diao, C X Guo et al. Green Chem., 2013, 15(9):2401~2407. 

    21. [21]

      M Juhl, S L R Laursen, Y Huang et al. ACS Catal., 2017, 7(2):1392~1396. 

    22. [22]

      W Z Zhang, M W Yang, X T Yang et al. Org. Chem. Front., 2016, 3(2):217~221. 

    23. [23]

      W Z Zhang, W J Li, X Zhang et al. Org. Lett., 2010, 12(21):4748~4751. 

    24. [24]

      W J Yoo, T V Q Nguyen, S Kobayashi. Angew. Chem. Int. Ed., 2014, 53(38):10213~10217. 

    25. [25]

      L Zhang, J H Cheng, B Carry et al. J. Am. Chem. Soc., 2012, 134(35):14314~14317. 

    26. [26]

      Y Zhao, Y X Liu, S W Bi et al. J. Organomet. Chem., 2013, 745:166~172.

    27. [27]

      D Y Yu, Y G Zhang. PNAS, 2010, 107(47):20184~20189. 

    28. [28]

      S H Li, W M Yuan, S M Ma. Angew. Chem., 2011, 123(11):2626~2630. 

    29. [29]

      S Li, S Ma. Chem. Asian J., 2012, 7(10):2411~2418. 

    30. [30]

      T Cao, S M Ma. Org. Lett., 2016, 18(7):1510~1513. 

    31. [31]

      B Miao, S H Li, G Li et al. Org. Lett., 2016, 18(11):2556~2559. 

    32. [32]

      T Fujihara, Y Horimoto, T Mizoe et al. Org. Lett., 2014, 16(18):4960~4963. 

    33. [33]

      X Q Wang, Y Liu, R Martin. J. Am. Chem. Soc., 2015, 137(20):6476~6479. 

    34. [34]

      X Q Wang, M Nakajima, R Martin. J. Am. Chem. Soc., 2015, 137(28):8924~8927. 

    35. [35]

      N Saito, Z Sun, Y Sato. Chem. Asian J., 2015, 10(5):1170~1176. 

    36. [36]

      J B Diccianni, T Heitmann, T J Diao. J.Org. Chem., 2017, 82(13), 6895~6903. 

    37. [37]

      X Zhang, W Z Zhang, X Ren et al. Org. Lett., 2011, 13(9), 2402~2405. 

    38. [38]

      S H Kim, K H Kim, S H Hong. Angew. Chem. Int. Ed., 2014, 53(3):771~774. 

    39. [39]

      F J Guo, Z Z Zhang, J Y Wang et al. Tetrahedron, 2017, 73(7):900~906. 

    40. [40]

      M Arndt, E Risto, T Krause et al. ChemCatChem, 2012, 4(4):484~487. 

    41. [41]

      D Yu, M X Tan, Y Zhang. Adv. Synth. Catal., 2012, 354(6):969~974. 

    42. [42]

      R A Molla, K Ghosh, B Banerjee et al. Colloid Interf. Sci., 2016, 477:220~229. 

    43. [43]

      S S Li, J Sun, Z Z Zhang et al. Dalton Transac., 2016, 45(26):10577~10584. 

    44. [44]

      Z Z Zhang, R J Mi, F J Guo et al. J. Saudi. Chem. Soc., 2017, 21(6):685~690. 

    45. [45]

      R Ugajin, S Kikuchi, T Yamada. Synlett., 2014, 25(08):1178~1180. 

    46. [46]

      H T He, C R Qi, X H Hu. Green Chem., 2014, 16(8):3729~3733. 

    47. [47]

      M Yoshida, T Mizuguchi, K Shishido. Chem. Eur. J., 2012, 18(49):15578~15581. 

    48. [48]

      T Ishida, S Kikuchi, T Tsubo et al. Org. Lett., 2013, 15(4):848~851. 

    49. [49]

      T Ishida, S Kikuchi, T Yamada. Org. Lett., 2013, 15(14):3710~3713. 

    50. [50]

      T Ishida, R Kobayashi, T Yamada. Org. Lett., 2014, 16(9):2430~2433. 

    51. [51]

      Q W Song, B Yu, X D Li et al. Green Chem., 2014, 16(3):1633~1638. 

    52. [52]

      C X Guo, B Yu, J N Xie et al. Green Chem., 2015, 17(1):474~479. 

    53. [53]

      Q W Song, W Q Chen, R Ma et al. ChemSusChem., 2015, 8(5):821~827. 

    54. [54]

      Y Yuan, Y Xie, C Zeng et al. Catal. Sci. Tech., 2017, 7(14):2935~2939. 

    55. [55]

      P García-Domínguez, L Fehr, G Rusconi et al. Chem. Sci., 2016, 7(6):3914~3918. 

    56. [56]

      S Sun, B B Wang, N Gu et al. Org. Lett., 2017, 19(5):1088~1091. 

    57. [57]

      P Shao, S Wang, G X Du et al. RSC Adv., 2017, 7(6):3534~3539. 

    58. [58]

      L Zang, J Cheng, T Ohishi et al. Angew. Chem. Int. Ed., 2010, 122(46):8852~8855. 

    59. [59]

      H Inomata, K Ogata, S Fukuzawa et al. Org. Lett., 2012, 14(15):3986~3989. 

    60. [60]

      S Gaillard, C S J Cazin, S P Nolan. Acc. Chem. Res., 2011, 45(6):778~787. 

    61. [61]

      I I F Boogaerts, G C Fortman, M R L Furst et al. Angew. Chem. Int. Ed., 2010, 122(46):8856~8859. 

    62. [62]

      H Ohmiya, M Tanabe, M Sawamura. Org. Lett., 2011, 13(5):1086~1088. 

    63. [63]

      T Ohishi, L Zhang, M Nishiura et al. Angew. Chem. Int. Ed., 2011, 50(35):8114~8117. 

    64. [64]

      T W Butcher, E J McClain, T G Hamilton et al. Org. Lett., 2016, 18(24):6428~6431. 

    65. [65]

      M Juhl, S L R Laursen, Y Huang et al. ACS Catal., 2017, 7(2):1392~1396. 

    66. [66]

      H Mizuno, J Takaya, N Iwasawa. J. Am. Chem. Soc., 2010, 133(5):1251~1253. 

    67. [67]

      T G Ostapowicz, M Schmitz, M Krystof et al. Angew. Chem., 2013, 125(46):12341~12345. 

    68. [68]

      L P Wu, Q Liu, I Fleischer et al. Nat. Commun., 2014, 5:3091~2097. 

    69. [69]

      W Y Gao, H F Wu, K Y Leng et al. Angew. Chem. Int. Ed., 2016, 55(18):5472~5476. 

    70. [70]

      K Murata, N Numasawa, K Shimomaki et al. Chem. Commun., 2017, 53(21):3098~3101. 

    71. [71]

      P Shao, S Wang, C Chen et al. Org. Lett., 2016, 18(9):2050~2053. 

    72. [72]

      I I Boogaerts, S P Nolan. J. Am. Chem. Soc., 2010, 132(26):8858~8859. 

    73. [73]

      J Takaya, N Iwasawa. J. Am. Chem. Soc., 2008, 130(46):15254~15255. 

    74. [74]

      K Sasano, J Takaya, N Iwasawa. J. Am. Chem. Soc., 2013, 135(30):10954~10957. 

    75. [75]

      M Sharif, R Jackstell, S Dastgir et al. ChemCatChem, 2017, 9(4):542~546. 

    76. [76]

      M L Lejkowski, R Lindner, T Kageyama et al. Chem. Eur. J., 2012, 18(44):14017~14025. 

    77. [77]

      C Hendriksen, E A Pidko, G Yang et al. Chem. Eur. J., 2014, 20(38):12037~12040. 

    78. [78]

      N Huguet, I Jevtovikj, A Gordillo et al. Chem. Eur. J., 2014, 20(51):16858~16862. 

    79. [79]

      C M Williams, J B Johnson, T Rovis. J. Am. Chem. Soc., 2008, 130(45):14936~14937. 

    80. [80]

      N Ishida, Y Masuda, S Uemoto et al. Chem. Eur. J., 2016, 22(19):6524~6527. 

    81. [81]

      S Kikuchi, K Sekine, T Ishida et al. Angew. Chem. Int. Ed., 2012, 51(28):6989~6992. 

    82. [82]

      K Sekine, A Takayanagi, S Kikuchi et al. Chem. Commun., 2013, 49(96):11320~11322. 

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    19. [19]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(25)
  • Abstract views(4222)
  • HTML views(1270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return