Citation: WEN Hong-yan, ZHANG Guang-yi, JI De-xin, WAN Li-feng, ZHANG Liang, ZHANG Yu-ming, GAO Shi-qiu. Emission characteristics and control of NOx from oil sludge char fluidized bed combustion[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1401-1408. shu

Emission characteristics and control of NOx from oil sludge char fluidized bed combustion

  • Corresponding author: ZHANG Guang-yi, gyzhang@ipe.ac.cn
  • Received Date: 26 August 2019
    Revised Date: 25 September 2019

Figures(9)

  • To realize innocent treatment of oil sludge char, a lab-scale fluidized bed reactor was employed to study combustion of the oil sludge char in the term of nitrogen oxide emission characteristics at various different temperatures and particle sizes, as well as the reduction in the emission of NOx by using air-staging combustion technology. According to the results of scanning electron microscope and physical adsorption analyses of oil sludge char, the surface structure of the sludge char is dense and its pores are sparse, which is not conducive to the full combustion of organic matter inside. The combustion experiments of oil sludge char show that the generated NOx is mainly from coke-N and less from volatile-N. Reduction in the combustion temperature and the particle size to a proper extent can not only ensure full combustion of oil sludge char, but also inhibit NOx emission. When conducting air-staging combustion, by optimizing the excess air ratio, proportion of secondary air and position of secondary air inlet, the NOx emission is considerably reduced, and meanwhile the generation of fly ash is restrained, and these are beneficial for the ultimate treatment of the flue gas.
  • 加载中
    1. [1]

      XU N, WANG W X, HAN P F, LU X P. Effects of ultrasound on oily sludge deoiling[J]. J Hazard Mater, 2009,171(1/3):914-917.  

    2. [2]

      HU G J, LI J B, ZENG G M. Recent development in the treatment of oily sludge from petroleum industry:A review[J]. J Hazard Mater, 2013,261:470-490. doi: 10.1016/j.jhazmat.2013.07.069

    3. [3]

      SCHMIDT H, KAMINSKY W. Pyrolysis of oil sludge in a fluidised bed reactor[J]. Chemosphere, 2001,45:285-290. doi: 10.1016/S0045-6535(00)00542-7

    4. [4]

      SHEN L, ZHANG D K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed[J]. Fuel, 2003,82:465-472. doi: 10.1016/S0016-2361(02)00294-6

    5. [5]

      GONG Z Q, DU A, WANG Z B, FANG P W. Experimental study on pyrolysis characteristics of oil sludge with a tube furnace reactor[J]. Energy Fuels, 2017,31(8):8102-8108. doi: 10.1021/acs.energyfuels.7b01363

    6. [6]

      GAO Chang-sheng, WEI Mao, JIANG Wen-guang, LI Xiang-guo, LV Yang. Preparation and performance evaluation of roadbed materials based on pyrolysis residue of oily sludge[J]. Bull Chin Ceram Soc, 2019,38(6):1895-1900.  

    7. [7]

      ROS A, LILLO-RÓDENAS M A, FUENTE E, MONTES-MORÁN M A, MARTÍN M J, LINARES-SOLANO A. High surface area materials prepared from sewage sludge-based precursors[J]. Chemosphere, 2006,65(1):132-140. doi: 10.1016/j.chemosphere.2006.02.017

    8. [8]

      PENG Hai-jun, LI Zhi-guang, XIA Xin-liang, GUO Kai, SU Meng-fei, HE Chun-lian. Catalysis of sludge residual carbon to municipal disintegration-membrance sludge pyrolysis[J]. Environ Chem, 2014,33(3):508-514.  

    9. [9]

      ZHANG H F, LV C X, LI J, WU Q, HU Y K, DONG C Q. Solid waste mixtures combustion in a circulating fluidized bed:Emission properties of NOx, dioxin, and heavy metals[J]. Energy Proc, 2015,75:987-992. doi: 10.1016/j.egypro.2015.07.322

    10. [10]

      FAN W D, LIN Z C, LI Y Y, KUANG J G. Effect of air-staging on anthracite combustion and NOx formation[J]. Energy Fuels, 2009,23(1):111-120. doi: 10.1021/ef800343j

    11. [11]

      MLADENOVIĆ M, DAKIĆ D, NEMODA S. The combustion of biomass-The impact of its types and combustion technologies on the emission of nitrogen oxide[J]. Hem Ind, 2015,70:33-33.  

    12. [12]

      TRIKKELA A, KUUSIKA R, MARTINS A, PILU T, STENCEL J M. Utilization of estonian oil shale semicoke[J]. Fuel Process Technol, 2008,89:756-763. doi: 10.1016/j.fuproc.2008.01.010

    13. [13]

      HONG Yong, LU Xiao-feng, WANG Quan-hai, YANG Yu. Study on combustion characteristics of oil shale semi-coke in fluidized bed[J]. J Eng Therm Energy Power, 2016,31(3):92-96.  

    14. [14]

      BIEŃ J D, BIEŃ J B, NOWAK W. Combustion of char received after sewage sludge pyrolysis in the circulating fluidized bed[J]. J Chin Inst Chem Eng, 2001,32(5):415-418.  

    15. [15]

      HU Wen-bin, YANG Hai-rui, LU Jun-fu, YUE Guang-xi, ZHANG Jian-sheng. Study on ignition properties of coals by using thermogravimetry[J]. Power Syst Eng, 2005,21(2):8-9. doi: 10.3969/j.issn.1005-006X.2005.02.003

    16. [16]

      KILPINEN P, HUPA M. Homogeneous N2O chemistry at fluidized bed combustion conditions:A kinetic modeling study[J]. Combust Flame, 1991,85(1/2):94-104.  

    17. [17]

      ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, JIANG Shu-dong, LIU Jian-zhong, CEN Ke-fa. A density functional study of heterogeneous formation and decomposition of N2O on the surface of char[J]. J Fuel Chem Technol, 2011,39(11):806-811. doi: 10.3969/j.issn.0253-2409.2011.11.002

    18. [18]

      NIU Xin, XIAO Jun. Nitrogen transformation in chemical looping combustion of sewage sludge[J]. J Fuel Chem Technol, 2017,45(4):505-512. doi: 10.3969/j.issn.0253-2409.2017.04.016

    19. [19]

      GE Ya-xin, ZHANG Guang-yi, CUI Li-jie, GAO Shi-qiu. Characteristics of NOx and SO2 emission from combustion of antibiotic mycelial residue with high water content in fluidized bed reactor[J]. J Chem Ind Eng (Chin), 2017,68(8):3250-3257.  

    20. [20]

      WANG Yuan, LUO Yong-hao, LIN Peng-yun, JI Jun-jie. Study on gas diffusion through ash layer during coal combustion process and the application[J]. Chin J Power Eng, 2010,30(8):573-577.  

    21. [21]

      ZHOU Zhi-jun, ZHOU Ning, CHEN Yao-ji, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. Experimental research on the combustion and NOx generation characteristics of low volatile coal[J]. Proc CSEE, 2010,30(29):55-61.  

    22. [22]

      CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019,47(3):279-286.  

    23. [23]

      ISHIZUKA H, HYVARINEN K, MORITA A, SUZUKI A, YANO K, HIROSE R. Experimental study on NOx reduction in CFB coal combustion[C]//Circulating Fluidized Bed Technology. Proceedings of the Second International Conference On Circulating Fluidized Beds. France: Compiégne, 1988: 437-444.

    24. [24]

      WERTHER J, OGADA T. Sewage sludge combustion[J]. Proc Energy Combust Sci, 1999,25(1):55-116. doi: 10.1016/S0360-1285(98)00020-3

    25. [25]

      LEDESMA E B, NELSON P F, MACKIE J C. An experimental and kinetic modeling study of the reduction of NO by coal volatiles in a flow reactor[J]. Proc Combust Inst, 2000,28(2):2345-2351. doi: 10.1016/S0082-0784(00)80646-3

    26. [26]

      PERMCHART W, KOUPRIANOV V I. Emission performance and combustion efficiency of a conical fliodized-bed combustor firing various biomass fuels[J]. Bioresour Technol, 2004,92(1):83-91. doi: 10.1016/j.biortech.2003.07.005

    27. [27]

      MA Hui, ZHAO Jun-ping, ZHANG Xiao-dong. Optimization of secondary air layout to reduce NOx emissions[J]. Power Syst Eng, 2015,31(1):71-72.  

  • 加载中
    1. [1]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    2. [2]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    3. [3]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    6. [6]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    7. [7]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(6)
  • Abstract views(1377)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return