Citation: LI Rui-lian, DU Mei-fang, WU Xiao-jiang, XU Lu-xia, ZHANG Zhong-xiao. Effect of kaolin on the ash fusion characteristics of high alkali Zhundong coal: A quantum chemistry and experimental study[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 513-520. shu

Effect of kaolin on the ash fusion characteristics of high alkali Zhundong coal: A quantum chemistry and experimental study

  • Corresponding author: DU Mei-fang, dumeif@163.com
  • Received Date: 25 August 2015
    Revised Date: 19 January 2016

    Fund Project: the National Natural Science Foundation of China 51276212

Figures(5)

  • The effect of kaolin on the ash fusion characteristics of high alkali Xinjiang Zhundong coal was investigated by quantum chemistry calculation and experimental measurement methods. The results show that the ash fusion temperature is increased significantly by adding kaolinite; the ash fusion temperature increases rapidly at first with the increase of kaolinite content added in the Zhundong coal and then levels off when the fraction of kaolinite exceeds 10%. By adding kaolin in the Zhundong coal, the content of minerals with a low melting point (1 100-1 200 ℃), such as anorthite and anhydrite, is reduced, whereas mullite is found at 1 200-1 300 ℃. O (26), Si (6), O (22) and Si (8) atoms in the kaolinite molecular structure exhibit relatively high reactivity; Al-O bond, which is connected with O (26) and O (22), can be ruptured by reacting with Fe2+ or other metal ions in ash as an electrophilic reagent. The O2- of alkali oxides in ash, such as Na2O and CaO, can react as a nucleophilic reagent with Si (6) and Si (8) in kaolinite, breaking the oxygen bridge bond of Si-O-Si in kaolinite.
  • 加载中
    1. [1]

      YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of Zhundong coal in xinjiang region and type-selection for boilers burning this coal sort[J]. Therm Power Gen, 2010,39(8):38-40.  

    2. [2]

      ZHOU J B, ZHUANG X G, ALASTUEY A, QUEROLD X, LI J H. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China[J]. Int J Coal Geol, 2010,82(1):51-67.  

    3. [3]

      FAN Jian-yong. Experimental research about Zhundong coal slagging characteristics and its coal blending ash fusion[D]. Hangzhou: Zhejiang University, 2014. 

    4. [4]

      CEN Ke-fa, FAN Jian-ren, CHI Zuo-he, SHEN Luo-chan. Boiler and Heat Exchanger Product Ash, Slag, Wear and Corrosion Prevention Principle and Calculation[M]. Beijing: Science Press, 1993: 237-265.

    5. [5]

      JIANG Ying. Power Coal and Power Coal Blending[M]. Beijing: Chemical Industry Press, 2011: 65-67.

    6. [6]

      WANG Qin-hui, JING Ni-jie, LUO Zhong-yang, LI Xiao-min, JIE Tao. Experiments on the effect of chemical components of coal ash on the sintering temperature[J]. J China Coal Soc, 2010,35(6):1015-1020.  

    7. [7]

      YANG Jian-guo, DENG Fu-rong, ZHAO Hong, CEN Ke-fa. Mineral conversion of coal-ash in fusing process and the influence to ash fusion point[J]. Proc CSEE, 2006,26(17):122-126.  

    8. [8]

      TANG Li-hua, WANG Fu-ming, ZHU Xue-dong, ZHU Zi-bin. Relationship between mineral behavior in coke and ash melting temperature[J]. J East China Univ Sci Technol, 2003, 29(3): 243-247. 

    9. [9]

      DAI Bai-qian, WU Xiao-jiang, CHEN Yu-shuang, ZHANG Zhong-xiao. Experimental study and quantum chemistry calculation on coal ash fusion characteristics and mineral reaction mechanism[J]. J Chin Soc Power Eng, 2014,34(1):70-76.  

    10. [10]

      LINJEWILE T M, MANZOORI A R. Role of additives in controlling agglomeration and defluidization during fluidized bed combustion of high-sodium, high-sulphur low-rank coal[J]. Eng Fund Conf, 2007,11:2-7.  

    11. [11]

      LI Jie, DU Mei-fang, YAN Bo, ZHANG Zhong-xiao. Quantum and experimental study on coal ash fusion with borax fluxing agent[J]. J Fuel Chem Technol, 2008,36(5):519-523. doi: 10.1016/S1872-5813(08)60032-8 

    12. [12]

      HONG Han-lie, TIE Li-yun, MIN Xin-min, XIAO Rui-juan, ZHOU Yong, BIAN Qiu-juan. Surface chemistry of kaolinite by quantum chemistry calculations[J]. J Wuhan Univ Technol, 2005,27(1):25-29.  

    13. [13]

      FORESMAN J B, FRISCH A. Exploring chemistry with electronic structure methods (2nd ed). Gaussian, Inc, Pittsburg, PA, 1996.

    14. [14]

      CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of blend coal[J]. J Fuel Chem Technol, 2009,37(5):521-526.  

    15. [15]

      PARR R G, YANG W. Density Functional approach to the frontier-electron theory of chemical reactivity[J]. J Am Chem Soc, 1984,106:4049-4050. doi: 10.1021/ja00326a036

    16. [16]

      FU Rong, LU Tian, CHEN Fei-wu. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Phys-Chim Sin, 2014,30(4):628-639.  

    17. [17]

      NNABUK O E, STANISLAV R S, ENO E E. Fluoroquinolones as corrosion inhibitors for mild steel in acidic medium; experimental and theoretical studies[J]. Int J Electrochem Sci, 2010,5:1127-1150.  

    18. [18]

      STOYANOV S R, GUSAROV S, KUZNICKI M S, KOVALENKO A. Theoretical modeling of zeolite nanoparticle surface acidity for heavy oil upgrading[J]. J Phys Chem, 2008,112(17):6794-6810.  

    19. [19]

      STOYANOV S R, GUSAROV S, KOVALENKO A. Modelling of thiophene and benzene adsorption on Cu2+ and Ag+ exchanged chabazite surface. In 'Theoretical Aspect of Catalysis'. Eds. G.Vayssilov and T. Mineva; Heron press, Sofia, Bulgaria, 2008.

    20. [20]

      YANG W, MORTIER W J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines[J]. J Am Chem Soc, 1986,108(19):5708-5711. doi: 10.1021/ja00279a008

    21. [21]

      BRINDLEY G W, ROBINSON K. The structure of kaolinite[J]. Miner Mag, 1946,31:781-786.  

    22. [22]

      PERDEW J P. Unified theory of exchange and correlation beyond the local density approximation. Ziesche P, Esching H. Electronic Structure of Solids' 91.Berlin, Akademic Verlag, 1991: 11-20.

    23. [23]

      PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992,45(23):13244-13249. doi: 10.1103/PhysRevB.45.13244

    24. [24]

      WANG Y, PERDEW J P. Spin scaling of the electron-gas correlation energy in the high-density limit[J]. Phys Rev B, 1991,43(11):8911-8916. doi: 10.1103/PhysRevB.43.8911

    25. [25]

      POLITZER P, MURRAY J S. The electrostatic potential as a guide to molecular interactive behavior[C]// In Chemical Reactivity Theory: A Density Functional View. CRC Press: Boca Raton, 2009.

    26. [26]

      MICHAELIAN K H, YARIV S, NASSER A. Study of the interaction between caesium bromide and kaolinite by photoacoustic and fiffuse reflectance infrared spectroscopy[J]. Can J Chem, 1991,69:749-754. doi: 10.1139/v91-110

    27. [27]

      ZHANG Li-meng, DONG Xin-guang, LIU Ke, TAN Hou-zhang, WANG Xue-bin, WEI Bo. Effect of kaolin on ash slagging and mineral conversion of Zhundong coal[J]. J Fuel Chem Technol, 2015,43(10):1176-1181.  

    28. [28]

      MA Yong-jing. Study the Effect of additives on the fusibility of coal ash and its mechanism from a mineralogical point of view[D]. Taiyuan: Taiyuan University of Technology, 2009.

    29. [29]

      SHEN Ming-ke, QIU Kun-zan, HUANG Zhen-yu, WANG Zhi-hua, LIU Jian-zhong. Influence of kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J]. J Fuel Chem Technol, 2015,43(9):1044-1051.  

    30. [30]

      KYI S, CHADWICK B L. Screening of potential mineral additives for use as fouling preventatives in Victorian brown coal combustion[J]. Fuel, 1999,78(7):845-855. doi: 10.1016/S0016-2361(98)00205-1

    31. [31]

      LI Yong, XIAO Jun. The occurrence and migration mechanism of alkali metal during coal-fired process and research progress[J]. Clean Coal Technol, 2005,11(1):39-44.  

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    14. [14]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    15. [15]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    18. [18]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    19. [19]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    20. [20]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

Metrics
  • PDF Downloads(6)
  • Abstract views(2314)
  • HTML views(329)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return