Citation: Li Kunwei, Hao Huanhuan, Liu Jingbing, Wang Hao. Research Progress in Raman Spectroscopy Characterization of Graphene Materials[J]. Chemistry, ;2017, 80(3): 236-240, 245. shu

Research Progress in Raman Spectroscopy Characterization of Graphene Materials

  • Corresponding author: Liu Jingbing, liujingbing@bjut.edu.cn
  • Received Date: 1 July 2016
    Accepted Date: 14 September 2016

Figures(9)

  • Graphene have good application prospect in nano-electronic devices for its unique normalize electronic valence bond structure. Raman spectroscopy, as a sensitive and convenient technology, has been used for characterizing the structures and properties of graphene successfully. This paper mainly introduces the Raman spectra research on graphene with different doping state or deposited on different substrates. Although the G band and 2D band of Raman spectra has deviation in different degree on various substrates, by observing Raman spectroscopies of graphene on indium tin oxide, sapphire, and glass substrate, the conclusion that the intensity of 2D band can determine the layer of graphene is still applicable. Doping can change the charged state of graphene and make graphene show hole type (p) or electronic (n) doped features. The doping type of graphene can be described qualitatively, as well as the carrier concentration of graphene can be quantitatively determined by analyzing the changes of graphene Raman spectroscopy.
  • 加载中
    1. [1]

      K S Novoselov, A K Geim, S V Morozov et al. Science, 2004, 306(5696):666-669. 

    2. [2]

      K S Novoselov, D Jiang, F Schedinet al. PNAS, 2005, 102(30):10451-0453. 

    3. [3]

      J C Meyer, A K Geim, M I Katsnelson et al. Nature, 2007, 446(7131):60-63. 

    4. [4]

      K S Novoselov. Nat. Mater., 2007, 6(3):183-191. 

    5. [5]

      C Lee, X Wei, J W Kysar et al. Science, 2008, 321(5887):385-388. 

    6. [6]

      J S Bunch, S S Verbridge, J S Alden et al. Nano Lett., 2008, 8(8):2458-2462. 

    7. [7]

      Y Zhang, Y W Tan, H L Stormer et al. Nature, 2005, 438(7065):1-7.

    8. [8]

      D Shin, S K Bae, C Yan et al. Carbon Lett., 2012, 13(1):1-16. 

    9. [9]

      X Wang, L Zhi, K Müllen. Nano Lett., 2008, 8(1):323-327. 

    10. [10]

      H Yang, J Heo, S Park et al. Science, 2012, 336(6085):1140-1143. 

    11. [11]

      M D Stoller, S Park, Y Zhu et al. Nano Lett., 2008, 8(10):3498-3502. 

    12. [12]

      V C Tung, L M Chen, M J Allen et al. Nano Lett., 2009, 9(5):1949-1955. 

    13. [13]

      X Yan, X Cui, B Li et al. Nano Lett., 2010, 10(5):1869-1873. 

    14. [14]

      A C Ferrari. Solid State Commun., 2007, 143(1-2):47-57. 

    15. [15]

      A Gupta, G Chen, P Joshi et al. Nano Lett., 2006, 6(12):2667-2673. 

    16. [16]

      C H Lui, Z Li, Z Chen et al. Nano Lett., 2011, 11(1):164-69. 

    17. [17]

      C Cong, T Yu, K Sato et al. ACS Nano, 2011, 5(11):8760-768. 

    18. [18]

      X Zhang, Q Q Li, W P Han et al. Nanoscale, 2014, 6(13):7519-7525. 

    19. [19]

      M Begliarbekov, O Sul, S Kalliakos et al. Appl. Phys. Lett., 2010, 97(3):031908. 

    20. [20]

      A C Ferrari, J C Meyer, V Scardaci et al. Phys. Rev. Lett., 2006, 97(18):13831-13840. 

    21. [21]

      C Thomsen, S Reich. Phys. Rev. Lett., 2001, 85(24):5214-5217.

    22. [22]

      S García, A Marín. Phys. Rev. B, 2007, 76(76):4692-4692.

    23. [23]

      F Tuinstra, J L Koenig. J. Chem. Phys., 1970, 53(3):1126-1130. 

    24. [24]

      A Das, B Chakraborty, A K Sood. Bull. Mater. Sci., 2007, 31(3):579-584. 

    25. [25]

      I Calizo, S Ghosh, W Z Bao et al. Solid State Commun., 2009, 149(27-28):1132-1135. 

    26. [26]

      H Komurasaki, T Tsukamoto, K Yamazaki et al. J. Phys. Chem. C, 2012, 116(18):10084-10089. 

    27. [27]

      I Calizo, S Ghosh, D Teweldebrhan et al. Raman nanometrology of graphene on arbitrary substrates and at variable temperature//Nano Science+Engineering. Internat-ional Society for Optics and Photonics, 2008:70371B.

    28. [28]

      I Calizo, W Z Bao, F Miao et al. Appl. Phys. Lett., 2007, 91(20):201904. 

    29. [29]

      I Calizo, D Teweldebrhan, W Z Bao et al. J. Phys. Conf. Ser., 2008,109:012008. 

    30. [30]

      K S Novoselov, A K Geim, S V Morozov et al. Nature, 2005, 438(7065):197-200. 

    31. [31]

       

    32. [32]

      J Yan, Y Zhang, P Kim et al. Phys. Rev. Lett., 2007, 98(16):166802. 

    33. [33]

      S Pisana, M Lazzeri, C Casiraghi et al. Nat. Mater., 2007, 6(3):198-201. 

    34. [34]

      A Das, S Pisana, B Chakraborty et al. Nat. Nanotech., 2008, 3(4):210-215. 

    35. [35]

      L S Panchakarla, K S Subrahmanyam, S K Saha et al. Adv. Mater., 2009, 21(46):4726-4730.

    36. [36]

      A Das, A K Sood, A Govindaraj et al. Phys. Rev. Lett., 2007, 99(13):136803-136803. 

    37. [37]

      C Zhang, L Fu, N Liu et al. Adv. Mater., 2011, 23(8):1020-1024. 

    38. [38]

      X Li, L Fan, Z Li et al. Adv. Energy Mater., 2012, 2(4):425-429. 

    39. [39]

      L G Cancado, K Takai, T Enoki et al. Appl. Phys. Lett., 2006, 88(16):163106. 

    40. [40]

      R Voggu, B Das, C S Rout et al. J. Phys. Condens. Matter, 2008, 20(47):1005-1008.

  • 加载中
    1. [1]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    10. [10]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    12. [12]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    13. [13]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    14. [14]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

Metrics
  • PDF Downloads(197)
  • Abstract views(13728)
  • HTML views(4648)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return