Citation: LI Wei, TANG Chu-qiao, XIE Xin-an, LI Yan, LI Lu, SUN Jiao, FAN Di, WEI Xing. Effects of N-tert-butyl-α-phenylnitrone on the product distribution of cellulose liquefaction in supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 55-64. shu

Effects of N-tert-butyl-α-phenylnitrone on the product distribution of cellulose liquefaction in supercritical ethanol

  • Corresponding author: XIE Xin-an, xinanxie@scau.edu.cn
  • Received Date: 18 August 2016
    Revised Date: 9 October 2016

    Fund Project: National Natural Science Foundation of China 21576107National Natural Science Foundation of China 21176097and Guangdong Provincial Science and Technology Program Foundation of China 2014A010106024

Figures(7)

  • With N-tert-butyl-α-phenylnitrone (PBN) as free radicals trapper, the effects of PBN dosage and reaction temperature on the product distribution and bio-oil component distribution of cellulose liquefaction in supercritical ethanol were investigated using an autoclave. The results showed that the yields of bio-oil and volatile compounds were 37.17% and 50.08% without PBN, respectively; meanwhile the highest yield of bio-oil increased to 48.35%, whereas the volatile compound yield decreased to 35.65% with the PBN dosage increased from 0 to 0.4 g. With the increase of reaction temperature from 250℃ to 340℃, the cellulose conversion rate increased sharply from 23.10% to 88.92% while the bio-oil yield increased from 19.18% to 48.35% (320℃) and the volatile compound yield increased from 6.03% to 50.28% quickly. The GC-MS results showed that the dominant compounds in bio-oil were esters, ketones, alkanes, alcohols, acids and benzenes with the highest relative contents of 27.91%, 15.77%, 13.44%, 12.42%, 16.07% and 19.81%, respectively. The present results proved that PBN has obvious effects on the product distribution and bio-oil component distribution of cellulose liquefaction in supercritical ethanol, especially PBN can enhance the transformation between bio-oil and volatile compounds via reacting with benzyl radicals, methyl radicals, ethyl radicals, etc. The transformation among dominant compounds in bio-oil can be regulated by varying PBN dosage and reaction temperature.
  • 加载中
    1. [1]

      Chinese Ministry of Agriculture & US Department Energy. Chinese Biomass Resources Availability Evaluation[M]. Beijing:China Environmental Science Press, 1998.

    2. [2]

      SONG Chun-cai, WANG Gang, HU Hao-quan. Progress in thermochemical liquefaction of biomass[J]. Acta Energ Sol Sin, 2004,25(2):242-248.  

    3. [3]

      Japan Institute of Energy. Manual of Biomass and Bioenergy[M]. Beijing:Chemical Industry Press, 2007.

    4. [4]

      DENG Ke-yun. Development strategy of China's bio energy in 21st century[J]. Electr Power, 2000,33(9):82-84.  

    5. [5]

      LUO Zhong-yang, ZHOU Jin-song, WANG Shu-rong, YU Chun-jiang, FANG Meng-xiang, CEN Ke-fa. Review of the technologies of biomass energy utilization in China[J]. Energy China, 2004,26(9):39-42.  

    6. [6]

      CAO Xiang-hong. Thoughts on the countermeasures towards the healthy development of Chinese bio-energy industry[J]. Chem Ind Eng Prog, 2007,26(7):905-913.  

    7. [7]

      The National Natural Science Foundation of China. The National Natural Science Foundation of the "13th Five-Year" development plan[Z]. 2016, 06.

    8. [8]

      YAMAZAKI J, MINAMI E, SAKA S. Liquefaction of beech wood in various supercritical alcohols[J]. Wood Sci, 2006,52(6):527-532. doi: 10.1007/s10086-005-0798-4

    9. [9]

      MAZAHERI H, LEE K T, BHATIA S, MOHAMED A R. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil:Effect of solvents[J]. Bioresour Technol, 2010,101(19):7641-7647. doi: 10.1016/j.biortech.2010.04.072

    10. [10]

      ZHENG Chao-yang, XIE Xin-an, TAO Hong-xiu, ZHENG Lu-si, LI Yan. Depolymerization of stalk cellulose during its liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2012,40(5):526-532.  

    11. [11]

      TAO Hong-xiu, XIE Xin-an, ZHENG Chao-yang, ZHAN Xiao-qing. Liquefaction of cornstalk cellulose in sub/super-critical ethanol[J]. J Northwest Univ A & F (Nat Sci Ed), 2014,42(1):196-204.  

    12. [12]

      CHEN Xiao-fei. Analysis of the products from alkanolysis of the rice-stalk powder and related mechanism study[D].Wuhan:Wuhan University of Science and Technology, 2008.

    13. [13]

      MURNIEKS R, KAMPARS V, MALINS K, APSENIECE L. Hydrotreating of wheat straw in toluene and ethanol[J]. Bioresour Technol, 2014,163:106-111. doi: 10.1016/j.biortech.2014.04.022

    14. [14]

      TANG Shi-rong. Analysis of depolymerization product of cornstalk in supercritical ethanol[J]. J Anhui Agri Sci, 2009,37(11):4869-4870.  

    15. [15]

      ZHENG C, TAO H, XIE X. Distribution and characterizations of liquefaction of celluloses in sub-and super-critical ethanol[J]. Bioresour, 2013,8(1):648-662.  

    16. [16]

      ZHU Ming-jiang. The modificatios of spin trappers and their application in vivo[D]. Zhejiang:Zhejiang University, 2010.

    17. [17]

      LIU Yang, XU Guang-zhi, ZHAO Yao-xing, SUN Xiang-yu. ESR study of the ferr radical intermediates formed during the electrolytic process-electrolytic reduction of substituted phenyldiazonium salts[J]. Chin J Magn Reson, 1987,4(1):29-33.  

    18. [18]

      LIU Yang, XU Guang-zhi, ZHAO Yao-xing, SUN Xiang-yu. ESR study on the free radical intermediates formed during the photolysis of methyl[J]. Acta Phys-Chim Sin, 1989,5(2):135-140.  

    19. [19]

      HUANG Zhong-xi. Atom transfer radical polymerization catalyzed by immobilized cobalt catalyst[D].Shanghai:Shanghai Jiaotong University, 2008.

    20. [20]

      LI Wei, XIE Xin-an, TANG Cheng-zheng, LI Yan, LI Lu, WANG Ya-li, WEI Xing, FAN Di. Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol[J]. J Fuel Chem Technol, 2016,44(4):415-421. doi: 10.1016/S1872-5813(16)30021-4 

    21. [21]

      GB/T 2677.1, Fibrous raw material of sampling for analysis[S].

    22. [22]

      GB/T 2677.10-95, Fibrous raw material-determination of holocellulose[S].

    23. [23]

      GUO Z, BAI Z, BAI J, WANG Z, LI W. Co-liquefaction of lignite and sawdust under syngas[J]. Fuel Process Technol, 2011,92(1):119-125. doi: 10.1016/j.fuproc.2010.09.014

    24. [24]

      SHAO Qian-jun, PENG Jin-xing, XIU Shu-dong, WEN Xian-hong. Analysis of oil products by pyrolysis of bamboo in supercritical methanol[J]. Acta Energ Sol Sin, 2007,28(9):984-987.  

    25. [25]

      SHARYPOV V I, KUZNETSOV B N. Catalytic hydroliquefaction of barzass liptobiolitic coal in a petroleum residue as a solvent[J]. Fuel, 2006,85(7):918-922.  

    26. [26]

      PÜTÜN A E, ÖZCAN A, PÜTÜN E. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor:Yields and structural analysis of bio-oil[J]. J Anal Appl Pyrolysis, 1999,52(1):33-49. doi: 10.1016/S0165-2370(99)00044-3

    27. [27]

      WU Jing-li, WANG Cong-wei, YIN Xiu-li, WU Chuang-zhi, MA Long-long, ZHOU Zhao-qiu, CHEN Han-ping. Study on pyrolysis of heavy fractions of bio-oil by using TG-FTIR analysis[J]. Acta Energ Sol Sin, 2010,31(1):113-117.  

    28. [28]

      SOARES S, RICARDO N M P S, JONES S, HEATLEY F. High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR[J]. Eur Polym J, 2001,37(4):737-745. doi: 10.1016/S0014-3057(00)00181-6

    29. [29]

      TANG C, TAO H, ZHAN X, XIE X. Mechanism of esters formation during cellulose liquefaction in sub-and supercritical ethanol[J]. BioResources, 2014,9(3):4946-4957.

    30. [30]

      TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2013,41(1):60-66. doi: 10.1016/S1872-5813(13)60010-9 

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    8. [8]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    9. [9]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    10. [10]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    13. [13]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    14. [14]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    16. [16]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

Metrics
  • PDF Downloads(1)
  • Abstract views(680)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return