Citation: CHEN Ping, GU Ming-yan, CHEN Jin-chao, CHEN Xue, LU Kun. The mechanism of heterogeneous reduction reaction of NO by moderate gasification char[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 918-924. shu

The mechanism of heterogeneous reduction reaction of NO by moderate gasification char

  • Corresponding author: GU Ming-yan, gumy@ahut.edu.cn
  • Received Date: 4 May 2018
    Revised Date: 14 June 2018

    Fund Project: National Natural Science Foundation of China 51376008the National Key Basic R & D project of China 2017YFB0601805National Natural Science Foundation of China 51776001The project was supported by the National Key Basic R & D project of China (2017YFB0601805) and National Natural Science Foundation of China (51776001, 51376008)

Figures(7)

  • Zigzag carbonaceous model was applied to investigate the heterogeneous reduction mechanism of NO by moderate gasification char through the density functional theory in quantum chemistry method combined with thermodynamics and kinetics. The reaction path of heterogeneous reduction of NO by moderate gasification char were analyzed, and the energy change during heterogeneous reduction, thermodynamic and kinetic analysis were conducted. Research results show that the moderate gasification char is prone to adsorb NO. The process of CO desorption, which provides active sites for NO reduction, is a reaction rate determining step, and need to overcome the maximum barrier(398.03 kJ/mol). The reduction reaction is spontaneous and exothermic reaction in the coal combustion system and takes place in one direction. According to the theory of reaction rate determining step, the progress of the reaction need to overcome the larger activation energy(389.83 kJ/mol), and according to Arrhenius expression, the overall reaction rate is greatly affected by temperature. The higher the temperature is, the faster the reaction rate is, and the more favorable for NO reduction.
  • 加载中
    1. [1]

      FU Xing-min, ZHANG Yu-xiu, GUO Zhan-ying, LIU Hai-bing, LIU Shu-cheng, JIA Jin-wei, SHU Xin-qian. Characteristics andkinetics of the pyrolysis of coking coal tailings[J]. J China Coal Soc, 2013,38(2):320-325.  

    2. [2]

      ZHENG M, LI X, LIU J, GUO L. Initial chemical reaction simulation of coal pyrolysis via reaxff molecular dynamics[J]. Energy Fuels, 2013,27(6):2942-2951. doi: 10.1021/ef400143z

    3. [3]

      SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. J China Coal Soc, 2013,38(S1):206-210.  

    4. [4]

      SUZUKI T, KYOTANI T, TOMITA A. Study on the carbon-nitric oxide reactionin the presence of oxygen[J]. Ind Eng Chem Res, 1994,33:2840-2845. doi: 10.1021/ie00035a038

    5. [5]

      YAMASHITA H, TOMITA A, YAMADA H, KYOTANI T, RADOVIC L R. Influence of char surfacechemistry on the reduction of nitric oxide with chars[J]. Energy Fuels, 1993,7:85-89. doi: 10.1021/ef00037a014

    6. [6]

      GUPTA H, FAN L-S. Reduction of nitric oxide from combustion flue gas bybituminous coal char in the presence of oxygen[J]. Ind Eng Chem Res, 2003,42:2536-2543. doi: 10.1021/ie020693n

    7. [7]

      XIN J, SUN B M, ZHU H Y, YIN S J, ZHANG Z X, ZHONG Y F. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. J China Coal Soc, 2014,39(4):771-775.

    8. [8]

      ZHOU Z, ZHANG X, ZHOU J, LIU J, CEN K. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Source, 2014,36(2):158-166. doi: 10.1080/15567036.2010.506477

    9. [9]

      ZHU H Y, SUN B M, XI NJ, YIN S J, XIAO H P. Quantum chemistry research on NO heterogeneous reduction by char with the participation of CO under oxy-fuel combustion atmosphere[J]. J China Coal Soc, 2015,40(7):1641-1647.  

    10. [10]

      ZHANG H, LIU J, WANG X, JIANG X. Density functional theory study on two different oxygen enhancement mechanisms during NO-char interaction[J]. Combust Flame, 2016,169:11-18. doi: 10.1016/j.combustflame.2016.03.023

    11. [11]

      GAO Zheng-yang, YANG Wei-jie, YAN Wei-ping. Reaction mechanism of NO reduction with HCN catalyzed by char[J]. J Fuel Chem Technol, 2017,45(9):1043-1048.  

    12. [12]

      KARINA S, BRIAN S H. Density functional study of the chemisorption of O2 on the zig-zag surface of graphite[J]. Combust Flame, 2005,143(4):629-643. doi: 10.1016/j.combustflame.2005.08.026

    13. [13]

      SENDT K, HAYNES B S. Density functional study of the reaction of carbon surface oxides:the behavior of ketones[J]. J Phys Chem A, 2005,109(15):3438-3447. doi: 10.1021/jp045111p

    14. [14]

      SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C, 2007,111(14):5465-5473. doi: 10.1021/jp067363r

    15. [15]

      ZHANG H, JIANG X, LIU J, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Convers Manage, 2014,83(83):167-176.

    16. [16]

      YANG F H, YANG R T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:Insight into hydrogen storage in carbon nanotubes[J]. Carbon, 2002,40(3):437-444. doi: 10.1016/S0008-6223(01)00199-3

    17. [17]

      CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998,36(7):1061-1070.

    18. [18]

      MIN J X, WANG N B, WANG M F, HUO P J, LIU D. Investigation on the catalytic effects of AAEM during steam gasification and the resultant char reactivity in oxygen using Shengli lignite at different forms[J]. Int J Coal Sci Technol, 2015,2(3):223-231. doi: 10.1007/s40789-015-0083-0

    19. [19]

      LI H B, YU Y, HAN M F, LEI Z. Simulation of coal char gasification using O2/CO2[J]. Int J Coal Sci Technol, 2014,1(1):81-87. doi: 10.1007/s40789-014-0010-9

    20. [20]

      ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction reaction of N2O by char based on Zigzag carbonaceous model[J]. J China Coal Soc, 2017,42(11):3028-3034.

    21. [21]

      ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Zhejiang: Zhejiang University, 2012.

    22. [22]

      SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst, 2011,33(2):1851-1858. doi: 10.1016/j.proci.2010.06.021

    23. [23]

      PHAM B Q, TRUONG T N. Electronic spin transitions in finite-size graphene[J]. Chem Phys Lett, 2012,535(7):75-79.

    24. [24]

      ALEJANDRO M, THANH-THAI T T, FANOR M, THANH N.T.. CO desorption from oxygen species on carbonaceous surface:1. Effects of the local structure of the active site and the surface coverage[J]. J Phys Chem A, 2001,105(27):6757-6764. doi: 10.1021/jp010572l

    25. [25]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A. Gaussian09, revision E. 01[J]. Gaussian Inc., Wallingford, CT, 2009.  

    26. [26]

      ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015,82:312-21. doi: 10.1016/j.energy.2015.01.040

    27. [27]

      ALI M A, RAJAKUMAR B. Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory[J]. Comput Theor Chem, 2011,964:283-290. doi: 10.1016/j.comptc.2011.01.013

    28. [28]

      PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J]. Fuel, 2007,86:41-49. doi: 10.1016/j.fuel.2006.07.002

    29. [29]

      PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. Heterogeneous reduction of nitric oxide on synthetic coal chars[J]. Fuel, 2005,84:2275-2279. doi: 10.1016/j.fuel.2005.06.003

    30. [30]

      GAO Z Y, LV S K, YANG W J, YANG P F, JI S, MENG X X. Quantum chemistry investigation on the reaction mechanism of the elemental mercury, chlorine, bromine and ozone system[J]. J Mol Model, 2015,21(6):1-9.

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    3. [3]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    4. [4]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    9. [9]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(2)
  • Abstract views(475)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return