Citation: Li Xiaoliang, Liu Jiawen, Li Zhonghua. Visible-Light Driven Au/SrTiO3 Plasmonic Nanophotocatalysts for Hydrogen Production from Water Splitting[J]. Chemistry, ;2017, 80(8): 740-744, 714. shu

Visible-Light Driven Au/SrTiO3 Plasmonic Nanophotocatalysts for Hydrogen Production from Water Splitting

  • Corresponding author: Liu Jiawen, jiawenliu86@163.com
  • Received Date: 14 January 2017
    Accepted Date: 3 March 2017

Figures(8)

  • Au/SrTiO3 plasmonic nanophotocatalysts were prepared by hydrothermal and photo-deposition methods. The structure, composition, morphology, size and optical property of the as-prepared photocatalysts were characterized by XRD, XPS, SEM, TEM, EDS-mapping and UV-Visible diffuse reflectance spectroscopy. The photocatalytic hydrogen-production performance of Au/SrTiO3 plasmonic photocatalysts was tested under visible light. The results showed that SrTiO3 nanoparticles were successfully prepared by hydrothermal method. Due to the surface plasmon resonance effect of Au, the SrTiO3 nanoparticles exhibited improved light absorption in the visible-light region. Moreover, the effect of different Au loading amounts on the photocatalytic hydrogen-production activity of SrTiO3 plasmonic nanophotocatalysts was investigated. Among them, the 5%Au/SrTiO3 photocatalyst showed the highest hydrogen production activity. In addition, the photocatalytic mechanism was also discussed.
  • 加载中
    1. [1]

      K Maeda. Phys. Chem. Chem. Phys., 2013, 15:10537~10548. 

    2. [2]

      F E Osterloh. Chem. Soc. Rev., 2013, 42:2294~2320. 

    3. [3]

      J Cai, Z Huang, K Lv et al. RSC Adv., 2014, 4:19588~19593. 

    4. [4]

      S Hara, H Irie. Appl. Catal. B:Environ., 2012, 115:330~335. 

    5. [5]

      S Ouyang, H Tong, N Umezawa et al. J. Am. Chem. Soc., 2012, 134:1974~1977. 

    6. [6]

      U Sulaeman, S Yin, T Sato. Appl. Catal. B, 2011, 102:286~290. 

    7. [7]

      A Iwase, Y H Ng, Y Ishiguro et al. J. Am. Chem. Soc., 2011, 133:11054~11057. 

    8. [8]

      T K Townsend, N D Browning, F E Osterloh. ACS Nano, 2012, 6:7420~7426. 

    9. [9]

      P Kanhere, Z Chen. Molecules, 2014, 19:19995~20022. 

    10. [10]

      Z Zou, J Ye, K Sayama et al. Nature, 2001, 414:625~627.

    11. [11]

      R B Comes, P V Sushko, S M Heald et al. Chem. Mater., 2014, 26:7073~7082. 

    12. [12]

      W S Choi, H K Yoo, H Ohta. Adv. Funct. Mater., 2015, 25:799~804.

    13. [13]

      H Yu, S Yan, Z Li et al. Int. J. Hydrogen Energy, 2012, 37:12120~12127. 

    14. [14]

      J W Liu, G Chen, Z H Li et al. J. Solid State Chem., 2006, 179:3704~3708. 

    15. [15]

      T Puangpetch, T Sreethawong, S Chavadej. Int. J. Hydrogen Energy, 2010, 35:6531~6540.

    16. [16]

      H Zhang, S Ouyang, Z Li et al. J. Phys. Chem. Solids, 2006, 67:2501~2505.

    17. [17]

      S Boumaza, A Boudjemaa, A Bouguelia et al. Appl. Energy, 2010, 87:2230~2236. 

    18. [18]

      K Awazu, M Fujimaki, C Rockstuhl et al. J. Am. Chem. Soc., 2008, 130:1676~1680.

    19. [19]

      C Jia, P Yang, B Huang. ChemCatChem., 2014, 6:611~617. 

    20. [20]

      W S Wang, H Du, R X Wang et al. Nanoscale, 2013, 5:3315~3321. 

    21. [21]

      S Tonda, S Kumar, O Anjaneyulu et al. Phys. Chem. Chem. Phys., 2014, 16:23819~23828. 

    22. [22]

      F Su, T Wang, R Lv et al. Nanoscale, 2013, 5:9001~9009.

    23. [23]

      M Zhang, C Shao, Z Guo et al. ACS Appl. Mater. Interf., 2011, 3:369~377. 

    24. [24]

      S Fuentes, P Muñoz, N Barraza et al. J. Sol-Gel. Sci. Technol., 2015, 75:593~601.

    25. [25]

      Y S Kim, D J Yun, S H Kim et al. Appl. Phys., 2016, 16:1464~1467. 

    26. [26]

      T F Jaramillo, S H Baeck, B R Cuenya et al. J. Am. Chem. Soc., 2003, 125:7148~7149.

    27. [27]

      H Tan, Z Zhao, W Zhu et al. ACS Appl. Mater. Interf., 2014, 6:19184~19190.

    28. [28]

      E Guo, L Yin. J. Mater. Chem. A, 2015, 3:13390~13401.

    29. [29]

      D Lu, S Ouyang, H Xu et al. ACS Appl. Mater. Interf., 2016, 8:9506~9513.

    30. [30]

      L Liu, P Li, B Adisak et al. J. Mater. Chem. A, 2014, 2:9875~9882. 

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    3. [3]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    6. [6]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    7. [7]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    8. [8]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    9. [9]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    11. [11]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(13)
  • Abstract views(3560)
  • HTML views(1186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return