Citation: Fangyuan Liu, Luyi Xu, Yang Xiu, Shengjie Wang. Non-Metallic Element Doped Titanium Dioxide[J]. Chemistry, ;2021, 84(2): 108-119, 148. shu

Non-Metallic Element Doped Titanium Dioxide

  • Corresponding author: Shengjie Wang, sjwang@upc.edu.cn
  • Received Date: 16 July 2020
    Accepted Date: 1 September 2020

Figures(9)

  • Titanium dioxide attracts great attentions for its important applications in many fields, especially in photoelectronic conversion and photocatalysis due to its excellent light stability, non-toxicity and easy preparation. However, its relatively poor charge transport property and wide bandgap are two main limitations for its extensive application in light-responsive materials. To meet such challenges, two strategies including ion doping and going nanoscale are used and demonstrated to be effective in regulating its band gap structure and charge transport behavior. Ion doping can be divided into two categories, metal doping and nonmetal doping, according to the properties of the impurity elements. Besides, compared with traditional titanium dioxide, nano-sized titanium dioxide possesses larger surface areas and special nanosized effect, resulting in higher chemical activity and heat resistance. In this review, we focused on the research progress of non-metallic element doped titanium dioxide. Emphases was put on the relationship within the doping element, the band gap structure, visible light responsibility and photocatalytic performance of the hybrid titanium dioxide. Additionally, the application of non-metallic element doped titanium dioxide was also involved.
  • 加载中
    1. [1]

      Hamad D, Dhib R, Mehrvar M. J. Polym. Environ., 2016, 24(1): 72~83.

    2. [2]

      Bustillo-Lecompte C F, Ghafoori S, Mehrvar M. J. Environ. Chem. Eng., 2016, 4(1): 719~732.

    3. [3]

      Nasirian M, Lin Y P, Bustillo-Lecompte C F, et al. Int. J. Environ. Sci. Technol., 2018, 15(9): 2009~2032.

    4. [4]

      Malakootian M, Mesdaghinia A, Rezaei S. Journal of Kerman University of Medical Sciences, 2017, 24(2): 147~158.

    5. [5]

      Wang S Q, Liu W B, Fu P, et al. Korean J. Chem. Eng., 2017, 34(5): 1584~1590.

    6. [6]

      Chen D, Caruso R A. Adv. Funct. Mater., 2013, 23(11): 1356~1394.

    7. [7]

      Wang H, Miyauchi M, Ishikawa Y, et al. J. Am. Chem. Soc., 2011, 133(47): 19102~19109.

    8. [8]

      Su J J, Li Z D, Zhang Y Q, et al. RSC Adv., 2016, 6(20): 16177~16182.

    9. [9]

      Ma Y, Wang X, Jia Y, et al. Chem. Rev., 2014, 114(19): 9987~10043.

    10. [10]

      Abdelhaleem A, Chu W. Chem. Eng. J., 2018, 338(15): 411~421.

    11. [11]

      Shehzad N, Tahir M, Johari K, et al. J. CO2 Util., 2018, 26: 98~122.

    12. [12]

      Sinhamahapatra A, Jeon J P, Yu J S. Energ. Environ. Sci., 2015, 8(12): 3539~3544.

    13. [13]

      Zheng X Z, Li D Z, Li X F, et al. Appl. Catal. B, 2015, 168~169: 408~415.

    14. [14]

      Khaki M R D, Shafeeyan M S, Raman A A A, et al. J. Environ. Manag., 2017, 198(2): 78~94.

    15. [15]

      Huang L W, Fu W Y, Zhang Z Y. Mater. Lett., 2017, 209(15): 585~588.

    16. [16]

      Behnajadym A, Eskandarloo H. Chem. Eng. J., 2013, 228(15): 1207~1213.

    17. [17]

      Todorova N, Giannakopoulou T, Romanos G, et al. Int. J. Photoenergy, 2008, 534038.

    18. [18]

      Mao C Y, Zuo F, Hou Y, et al. Angew. Chem. Int. Ed., 2014, 53(39): 10485~10489.

    19. [19]

      Shayegan Z, Lee C S, Haghighat F. Chem. Eng. J., 2018, 334(15): 2408~2439.

    20. [20]

      Yun J Y, Hwang S H, Jang J. ACS Appl. Mater. Inter., 2015, 7(3): 2055~2063.

    21. [21]

      Wei Z, Janczarek M, Endo M, et al. Appl. Catal. B, 2018, 237(5): 574~587.

    22. [22]

      Xie F Y, Li Y F, Dou J, et al. J. Power Sources, 2016, 336(30): 143~149.

    23. [23]

      Sengupta D, Das P, Mondal B, et al. Renew. Sustain. Energ. Rev., 2016, 60: 356~376.

    24. [24]

      Altin I, Sokmen M, Biykloglu Z. Desalin. Water Treat., 2016, 57(34): 16196~16207.

    25. [25]

      Shao G S. J. Phys. Chem. C, 2009, 113(16): 6800~6808.

    26. [26]

      Pap Z, Baia L, Mogyorósi K, et al. Catal. Commun., 2012, 17(5): 1~7.

    27. [27]

      Mulmi D D, Thapa D, Dahal B, et al. Int. J. Mater. Sci. Eng., 2016, 4(3): 172~178.

    28. [28]

      Zou M M, Xiong F Q, Ganeshraja A S, et al. Mater. Chem. Phys., 2017, 195(1): 259~267.

    29. [29]

      Primc D, Bartsch M, Barreca D, et al. Sustain. Energy Fuels, 2017, 1(1): 199~206.

    30. [30]

      Foura G, Chouchou N, Soualah A, et al. Catalysts, 2017, 7(11): 344.

    31. [31]

      Freyria F S, Compagnoni M, Ditaranto N, et al. Catalysts, 2017, 7(7): 213.

    32. [32]

      Shiba K, Kataoka T, Okuda M, et al. Royal Soc. Chem. Adv., 2016, 6(61): 55750~55754.

    33. [33]

      Husain S, Alkhtaby L A, Giorgetti E, et al. J. Luminescence, 2016, 172: 258~263.

    34. [34]

      Crisan M, Rǎileanu M, Drǎgan N, et al. Appl. Catal. A, 2015, 504(5): 130~142.

    35. [35]

      Santos R d S, Faria G A, Giles C, et al. ACS Appl. Mater. Inter., 2012, 4(10): 5555~5561.

    36. [36]

      Hinojosa-Reyes M, Camposeco-Olis R, Zanella R, et al. Chemosphere, 2017, 184: 992~1002.

    37. [37]

      Obregon S, Lee S W, Rodriguez-gonzalez Ⅴ. Mater. Lett., 2016, 173(15): 174~177.

    38. [38]

      Pham T D, Lee B K. Appl. Surf. Sci., 2014, 296(30): 15~23.

    39. [39]

      Zhi J T, Yu X Q, Bao J J, et al. Korean J. Chem. Eng., 2016, 33(6): 1823~1830.

    40. [40]

      Praveen P, Viruthagiri G, Mugundan S, et al. Spectrochim. Acta A, 2014, 120(24): 548~557.

    41. [41]

      Ning X W, Wang X X, Yu X F, et al. J. Alloys Compd., 2016, 658(15): 177~182.

    42. [42]

      Tshabalala Z P, Shingange K, Cummings F R, et al. J. Colloid Interf. Sci., 2017, 504(15): 371~386.

    43. [43]

      Salazar-villanueva M, Cruz-López A, Zaldívar-Cadena A A, et al. Mater. Sci. Semicon. Proc., 2017, 58: 8~14.

    44. [44]

      Wu M C, Chan S H, Jao M H, et al. Solar Energy Mater. Solar Cells, 2016, 157: 447~453.

    45. [45]

      Nair R G, Mazumdar S, Modak B, et al. J. Photochem. Photobiol. A, 2017, 345(1): 36~53.

    46. [46]

      Sui R H, Yong J L, Berlinguette C P. J. Mater. Chem., 2010, 20(3): 498~503.

    47. [47]

      Lübke M, Johnson L, Makwana N M, et al. J. Power Sources, 2015, 294(30): 94~102.

    48. [48]

      Li J L, Xu X T, Liu X J, et al. J. Alloys Compd., 2016, 679(15): 454~462.

    49. [49]

      Cai Q B, Zhang Y Q, Liang C, et al. Electrochim. Acta, 2018, 261, (20): 227~235.

    50. [50]

      Inturi S N R, Boningari T, Suidan M, et al. Appl. Catal. B, 2014, 144: 333~342.

    51. [51]

      Bhethanabotal V C, Russell D R, Kuhn J N. Appl. Catal. B, 2017, 201: 156~164.

    52. [52]

      Mazierski P, Mikolajczyk A, Bajorowicz B, et al. Appl. Catal. B, 2018, 233(5): 301~317.

    53. [53]

      Shwetharani R, Sakar M, Fernando C A N, et al. Catal. Sci. Technol., 2019, 9(1): 12~46.

    54. [54]

      Gao H T, Liu Y Y, Ding C H, et al. Int. J. Min. Metal. Mater., 2011, 18(5): 606~614.

    55. [55]

      Zhang Q Y, Li Y, Ackerman E A, et al. Appl. Catal. A, 2011, 400: 195~202.

    56. [56]

      Cho I S, Lee C H, Feng Y Z, Logar M, Rao P M, Cai L L, Kim D R, Sinclair R, Zheng X L. Nat. Commun., 2014, 5: 3204.

    57. [57]

      Lu N, Quan X, Li J Y, et al. J. Phys. Chem. C, 2007, 111(32): 11836~11842.

    58. [58]

      Simsek E B. Appl. Catal. B, 2017, 200: 309~322.

    59. [59]

      Wang Y, Jia K, Pan Q, et al. ACS Sustain. Chem. Eng., 2019, 7(1): 117~122.

    60. [60]

      Xiao Q, Ouyang L L. Chem. Eng. J., 2009, 148(2/3): 248~253.

    61. [61]

      Lee Y F, Chang K H, Hu C C, et al. J. Mater. Chem., 2010, 20: 5682~5688.

    62. [62]

      Sakthivel S, Kisch H. Angew. Chem. Int. Ed., 2003, 42(40): 4908~4911.

    63. [63]

      Warkhade S W, Warkhade G S, Zodape S P, et al. Mater. Sci. Semicon. Proc., 2017, 63(1): 18~24.

    64. [64]

      Zhou Q X, Xing A, Zhao D C, et al. Chemosphere, 2016, 165: 268~276.

    65. [65]

      Li W J, Liang R, Zhou N Y, et al. ACS Omega, 2020, 5(17): 10042~10051.

    66. [66]

      Huang M, Yu J H, Hu Q, et al. Appl. Surf. Sci., 2016, 389(15): 1084~1093.

    67. [67]

      Bao N, Wei Z T, Ma Z H, et al. J. Hazard. Mater., 2010, 174(1/2/3): 129~136.

    68. [68]

      Guo J F, Li S M, Duan L, et al. Integr. Ferroelectr., 2016, 168(1): 170~182.

    69. [69]

      Chen C L, Wei Y L, Yuan G Z, et al. Adv. Funct. Mater., 2017, 27(31): 1701575.

    70. [70]

      Du J, Li X Y, Li K, et al. J. Alloys Compd., 2016, 687(5): 893~897.

    71. [71]

      Ansari S A, Khan M M, Ansari M O, et al. New J. Chem., 2016, 40: 3000~3009.

    72. [72]

      Wang G M, Xiao X H, Li W Q, et al. Nano Lett., 2015, 15(7): 4692~4698.

    73. [73]

      Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(5528): 269~271.

    74. [74]

      Kong X L, Peng Z B, Jia P P, et al. ACS Appl. Nano Mater. 2020, 3(2): 1373~1381.

    75. [75]

      Kumar M P, Jagannathan R, Ravichandran S. Energy Fuels, 2020, 34(7): 9030~9036.

    76. [76]

      Jiang G M, Cao J W, Chen M, et al. Appl. Surf. Sci., 2018, 458: 77~85.

    77. [77]

      Gopal N O, Lo H H, Ke T F, et al. J. Phys. Chem. C, 2012, 116(30): 16191~16197.

    78. [78]

      Feng X Y, Wang P F, Hou J, et al. J. Hazard. Mater., 2018, 351: 196~205.

    79. [79]

      Feng H J, Zhang M H, Yu L E. J. Nanosci. Nanotechnol., 2013, 13(7): 4981~4989.

    80. [80]

      Hosseinzadeh G, Rasoulnezhad H, Ghasemian N, et al, J. Aust. Ceram. Soc., 2019, 55(2): 387~394.

    81. [81]

      Ni J F, Fu S D, Wu C, et al. Adv. Mater., 2016, 28(11): 2259~2265.

    82. [82]

      Zhang Y, He X R, Tang J H, et al. ACS Appl. Mater. Inter., 2019, 11(47): 44170~44178.

    83. [83]

      Wang W L, Wang Z F, Liu J J, et al. Sci. Rep., 2017, 7: 46610.

    84. [84]

      Gurkan Y Y, Cinar Z. Chem. Eng. J., 2013, 214(1): 34~44.

    85. [85]

      Xie W, Li R, Xu Q U. Sci. Rep., 2018, 8: 8752.

    86. [86]

      Zheng J W, Bhattcahrayya A, Wu P, et al. J. Phys. Chem., 2010, 114(15): 7063~7069.

    87. [87]

      Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002, 14(9): 3808~3816.

    88. [88]

      Xu J J, Ao Y H, Fu D G, et al. J. Phys. Chem. Solids, 2008, 69(10): 2366~2370.

    89. [89]

      Zhang X Q, Wu Y P, Huang Y, et al. J. Alloys Compd., 2016, 681: 191.

    90. [90]

      Wu G S, Wang J P, Thomas D F, et al. Langmuir, 2008, 24(7): 3503~3509.

    91. [91]

      Wang X K, Wang C, Jiang W Q, et al. Chem. Eng. J., 2013, 189/190: 288~294.

    92. [92]

      Xu H, Zhang Z, Zhang L Z, Zet al. J. Solid State Chem., 2008, 181(9): 2516~2522.

    93. [93]

      Moitzheim S, Balder J E, Poodt P, et al. Chem. Mater., 2017, 29(23): 10007~10018.

    94. [94]

      Liu G, Sun C H, Yan X X, et al. J. Mater. Chem., 2009, 19: 2822~2829.

    95. [95]

      Chen D M, Jiang Z Y, Geng J Q, et al. Ind. Eng. Chem. Res., 2007, 46(9): 2271~2746.

    96. [96]

      Mani A D, Muthusamy S, Anadan S, et al. J. Exp. Nanosci., 2015, 10: 115~125.

    97. [97]

      Zhu H, Jing Y, Pal M, et al. Nanoscale, 2017, 9: 1539~1546.

    98. [98]

      El-Sheikh S M, Khedr T M, Hakki A, et al. Sep. Purif. Technol., 2017, 173: 258~268.

    99. [99]

      Luo H M, Takata T, Lee Y, et al. Chem. Mater., 2004, 16(5): 846~849.

    100. [100]

      Elbanna O, Zhang P, Fujitsuka M, et al. Appl. Catal. B, 2016, 192: 80~87.

    101. [101]

      Chen D M, Jiang Z Y, Geng J Q, et al. J. Nanopart. Res., 2009, 11(2): 303~313.

    102. [102]

      Mukherjee K, Acharya K, Biswas A, et al. ACS Appl. Nano Mater., 2020, 3(2): 2016~2025.

    103. [103]

      Siddiqa A, Masih D, Anjum D, et al. J. Environ. Sci., 2015, 37: 100~109.

    104. [104]

      Hamadanian M, Reisi-Vanani A, Behpour M, et al. Desalination, 2011, 381(17): 319~324.

    105. [105]

      Bessergenev V G, Mateus M C, Vasconcelos D A, et al. International J. Photoenergy, 2012, 767054.

    106. [106]

      Dong F, Guo S, Wang H Q, Let al. J. Phys. Chem. C, 2011, 115(27): 13285~13292.

    107. [107]

      Zhao Y X, Zhao X F, Run S, et al. Adv. Mater., 2019, 31(16): 1806482.

    108. [108]

      Dong F, Wang H, Wu Z. J. Phys. Chem. C, 2009, 113(38): 16717~16723.

    109. [109]

      Rami R D, Joyashish D, Vijayamohanan K, et al. Sci. Rep., 2015, (4): 4897.

  • 加载中
    1. [1]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    15. [15]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    18. [18]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

Metrics
  • PDF Downloads(26)
  • Abstract views(1484)
  • HTML views(482)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return