Citation: Zhou Ruimin, Deng Dan, Lv Kun, Wei Zhixiang. Research and Application of Cutting-out Small Molecules as Organic Photovoltaic Materials[J]. Chemistry, ;2018, 81(1): 3-11. shu

Research and Application of Cutting-out Small Molecules as Organic Photovoltaic Materials

  • Received Date: 10 August 2017
    Accepted Date: 9 October 2017

  • The power conversion efficiency of organic solar cells has exceeded 13%. Among them, polymers and small organic molecules as active layer materials promote the development. Comparing the parent polymers, the cutting-out molecules are promising organic photovoltaic materials with the advantages of definite molecular weight, adjustable conjugate length, high extinction coefficient, excellent crystallinity and so on. In this paper, we briefly introduce the applications of cutting-out molecules in bulk heterojunction, ternary system, non-fullerene system, and related research works of our group. We also summarize their characteristics, and make a prospect of their applications.
  • 加载中
    1. [1]

      X Zhan, D Zhu. Polym. Chem., 2010, 1:409~419. 

    2. [2]

      R Søndergaard, M Hösel, D Angmo et al. Mater. Today, 2012, 15:36~49. 

    3. [3]

      Y Cui, H Yao, B Gao et al. J. Am. Chem. Soc., 2017, 139:7302~7309. 

    4. [4]

      W Ma, J Y Kim, K Lee et al. Macromol. Rapid Commun., 2007, 28:1776~1780. 

    5. [5]

      A M Ballantyne, L Chen, J Dane et al. Adv. Funct. Mater., 2008, 18:2373~2380. 

    6. [6]

      S M Tuladhar, M Azzouzi, F Delval et al. ACS Energy Lett., 2016, 1:302~308. 

    7. [7]

      L Yuan, K Lu, B Xia et al. Adv. Mater., 2016, 28:5980~5985. 

    8. [8]

      L Yuan, Y Zhao, K Lu et al. J. Mater. Chem. C, 2014, 2:5842~5849. 

    9. [9]

      L Yuan, Y Zhao, J Zhang et al. Adv. Mater., 2015, 27:4229~4233. 

    10. [10]

      W Li, D Wang, S Wang et al. ACS Appl. Mater. Interf., 2015, 7:27106~27114. 

    11. [11]

      C Zhou, Y Liang, F Liu et al. Adv. Funct. Mater., 2014, 24:7538~7547. 

    12. [12]

      G Zhang, C Zhou, C Sun et al. Macromol. Rapid Commun., 2017, 38:1700090. 

    13. [13]

      X Huang, G Zhang, C Zhou et al. New J. Chem., 2015, 39:3658~3664. 

    14. [14]

      S Kato, T Matsumoto, M Shigeiwa et al. Chem. Eur. J, 2006, 12:2303~2317. 

    15. [15]

      J Liu, L Bu, J Dong et al. J. Mater. Chem., 2007, 17:2832~2838. 

    16. [16]

      S Wen, J Pei, Y Zhou et al. Macromolecules, 2009, 42:4977~4984. 

    17. [17]

      J Hou, H Y Chen, S Zhang et al. J. Am. Chem. Soc., 2008, 130:16144~16145. 

    18. [18]

      Q Peng, X Liu, D Su et al. Adv. Mater., 2011, 23:4554~4558. 

    19. [19]

      Q Tao, M Xiao, M Zhu et al. Dyes Pigments, 2017, 144:142~150. 

    20. [20]

      J L Wang, K K Liu, J Yan et al. J. Am. Chem. Soc., 2016, 138:7687~7697. 

    21. [21]

      K W Song, T H Lee, E J Ko et al. J. Polym. Sci., Part A:Polym. Chem., 2014, 52:1028~1036. 

    22. [22]

      H J Song, D H Kim, E J Lee et al. J. Mater. Chem. A, 2013, 1:6010~6020. 

    23. [23]

      S Song, E J Choi, I S Shin et al. Polym. Bull., 2016, 74:2755~2766.

    24. [24]

      E Wang, L Hou, Z Wang et al. Adv. Mater., 2010, 22:5240~5244. 

    25. [25]

      Y Kim, H R Yeom, J Y Kim et al. Energy Environ. Sci., 2013, 6:1909~1916. 

    26. [26]

      R C Hiorns, R de Bettignies, J Leroy et al. Adv. Funct. Mater., 2006, 16:2263~2273. 

    27. [27]

      M Morana, P Koers, C Waldauf et al. Adv. Funct. Mater., 2007, 17:3274~3283. 

    28. [28]

      T L Nguyen, H Choi, S J Ko et al. Energy Environ. Sci., 2014, 7:3040~3051. 

    29. [29]

      C Lee, H Kang, W Lee et al. Adv. Mater., 2015, 27:2466~2471. 

    30. [30]

      S Li, W Liu, M Shi et al. Energy Environ. Sci., 2016, 9:604~610. 

    31. [31]

      Y Lin, J Wang, Z G Zhang et al. Adv. Mater., 2015, 27:1170~1174. 

    32. [32]

      X Long, Z Ding, C Dou et al. Adv. Mater., 2016, 28:6504~6508. 

    33. [33]

      H Bin, L Gao, Z G Zhang et al. Nat. Commun., 2016, 7:13651. 

    34. [34]

      L Gao, Z G Zhang, H Bin et al. Adv. Mater., 2016, 28:8288~8295. 

    35. [35]

      L Gao, Z G Zhang, L Xue et al. Adv. Mater., 2016, 28:1884~1890. 

    36. [36]

      Y Yang, Z G Zhang, H Bin et al. J. Am. Chem. Soc., 2016, 138:15011~15018. 

    37. [37]

      L Ye, W Zhao, S Li et al. Adv. Energy Mater., 2017, 7:1602000. 

    38. [38]

      W Zhao, D Qian, S Zhang et al. Adv. Mater., 2016, 28:4734~4739. 

    39. [39]

      H Bin, Z G Zhang, L Gao et al. J. Am. Chem. Soc., 2016, 138:4657~4664. 

    40. [40]

      H Bin, Y Yang, Z G Zhang et al. J. Am. Chem. Soc., 2017, 139(14):5085~5094. 

    41. [41]

      K Zhao, H U Khan, R Li et al. Adv. Funct. Mater., 2013, 23:6024~6035. 

    42. [42]

      Z Tang, B Liu, A Melianas et al. Adv. Mater., 2015, 27:1900~1907. 

    43. [43]

      Y Fu, B Wang, J Qu et al. Adv. Funct. Mater., 2016, 26:5922~5929. 

    44. [44]

      P Fu, D Yang, F Zhang et al. Sci. Chin. Chem., 2015, 58:1169~1175.

    45. [45]

      B Xia, L Yuan, J Zhang et al. J. Mater. Chem. A, 2017, 5:9859~9866. 

  • 加载中
    1. [1]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    2. [2]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    4. [4]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    7. [7]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    10. [10]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(8)
  • Abstract views(1401)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return