Citation: WANG Mei-cong, LIU Ting-ting, ZHANG Xue-jun, WU Dan, FAN Li-ping. Effect of anode modification on the performance of microbial fuel cell for dealing with the straw hydrolysate[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1146-1152. shu

Effect of anode modification on the performance of microbial fuel cell for dealing with the straw hydrolysate

  • Corresponding author: WANG Mei-cong, hollyword@163.com; hollywang@syuct.edu.cn
  • Received Date: 1 April 2017
    Revised Date: 16 June 2017

    Fund Project: General Project of the Education Department of Liaoning Province L2015428the National Natural Science Foundation of China 41603001the Program for Liaoning Excellent Talents in University of China LR2015052the National Natural Science Foundation of China 41373127the Fourth Regular Meeting of Science and Technology Cooperation between China and Macedonia 4-4Liaoning Natural Science Foundation of China 20170540724The project was supported by the National Natural Science Foundation of China (41373127, 41603001), the Program for Liaoning Excellent Talents in University of China (LR2015052), General Project of the Education Department of Liaoning Province (L2015428), the Fourth Regular Meeting of Science and Technology Cooperation between China and Macedonia (4-4) and Liaoning Natural Science Foundation of China (20170540724)

Figures(7)

  • A microbial fuel cell (MFC) was built with corn stalk hydrolysis solution as the anode substrate and activated sludge source bacteria as the anode microbes. The anode carbon felt (blank CC) was modified by various methods such as HNO3 acid treatment (HNO3/CC), chitosan modification (chitosan/CC) and layer-by-layer self-assembly (PDADMAC/α-Fe2O3/CC); the effect of anode modification on the performance of MFC in electricity generation was investigated. The results indicate that with blank CC, HNO3/CC, chitosan/CC and PDADMAC/α-Fe2O3/CC as the anode materials, the maximum electricity outputs of MFC are 248, 315, 452 and 522 mV, respectively, the maximum power densities are 54.6, 92.7, 203.8 and 248.1 mW/m2, respectively, and the COD removal rates are 82.21%, 81.46%, 82.53% and 86.44%, respectively. Moreover, PDADMAC/α-Fe2O3/CC exhibits the highest redox potential according to the CV curves and minimum polarization resistance (7 Ω) as determined by the EIS curves. As a result, the performance of MFC with four anodes follows the order of PDADMAC/α-Fe2O3/CC > chitosan/CC > HNO3/CC > blank CC.
  • 加载中
    1. [1]

      PENG Chun-yan, LUO Huai-liang, KONG Jing. Advance in estimation and utilization of crop residues resources in China[J]. J Chin Agricul Res Plan, 2014,35(3):14-20. doi: 10.7621/cjarrp.1005-9121.20140303

    2. [2]

      EISENHUBER K, KRENNHUBER K, STEINMULLER V, JAGER A. Comparison of Different Pre-treatment Methods for Separating from Straw During Lignocellulose Bioethanol Production[J]. Energy Procedia, 2013,40:172-81. doi: 10.1016/j.egypro.2013.08.021

    3. [3]

      HONG J L, REN L J, HONG J M, XU C Q. Environmental impact assessment of corn straw utilization in China[J]. J Cleaner Production, 2016,112(12):1700-8.

    4. [4]

      BULENS A, BEIRENDONCK S V, THIELEN J V, BUYS N, DRIESSRN B. Straw applications in growing pigs:Effects on behavior, straw use and growth[J]. App Anim Behav Sci, 2015,169(30):26-32.

    5. [5]

      LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nat Rev Microbial, 2009,7:375-381. doi: 10.1038/nrmicro2113

    6. [6]

      HAOYU E, CHENG S, SCOTT K, LOGAN B. Microbial fuel cell performance with non-Pt cathode catalysts[J]. Power Sources, 2007,171(2):275-281. doi: 10.1016/j.jpowsour.2007.07.010

    7. [7]

      FAN Li-ping, XU Dan-dan. Effect of electrochemically modified anode on the performance of MFC[J]. J Fuel Chem Technol, 2016,44(5):628-633.  

    8. [8]

      CRITTENDEN S R, SUND C J, SUMNER J J. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer[J]. Langmuir, 2006,22:9473-9476. doi: 10.1021/la061869j

    9. [9]

      ERABLE B, DUTEANU N, KUMAR S M S, FENG Y, GHANGREKAR M M, SCOTT K. Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications[J]. Electrochem Commun, 2009,7(11):1547-1549.

    10. [10]

      PARK D H, ZEIKUS J G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens[J]. Appl Microbiol Biotechnol, 2002,59(1):58-61. doi: 10.1007/s00253-002-0972-1

    11. [11]

      PARK D H, ZEIKUS J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnol Bioengin, 2003,81(3):348-355. doi: 10.1002/(ISSN)1097-0290

    12. [12]

      LI C, ZHANG L, DING L, REN H, CUI H. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis[J]. Biosens Bioelectron, 2011,26(10):4169-4176. doi: 10.1016/j.bios.2011.04.018

    13. [13]

      SUN J J, ZHAO H Z, YANG Q Z, SONG J, XUE A. A novel layer-by-layer self-assembled carbon nanotube-based anode:Preparation, characterization, and application in microbial fuel cell[J]. Electrochim Acta, 2010,55:3041-3047. doi: 10.1016/j.electacta.2009.12.103

    14. [14]

      PARK H, AYALA P, DESHUSSES M A, MULCHANDANI A, CHOI H, MYUNG N V. Electrodeposition of maghemite (α-Fe2O3) nanoparticles[J]. Chem Eng J, 2008,139(1):208-212. doi: 10.1016/j.cej.2007.10.025

    15. [15]

      SHARMA Y, PARNAS R, LI B. Bioenergy production from glycerol in hydrogen producing bioreactors (HPBs) and microbial fuel cells (MFCs)[J]. Int J Hydrogen Energy, 2011,36:3853-3861. doi: 10.1016/j.ijhydene.2010.12.040

    16. [16]

      LIU R, GAO C Y, ZHAO Y G, WANG A J, LU S S, WANG M, MAQBOOL F, HUANG Q. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells[J]. Bioresour Technol, 2012,123:86-91. doi: 10.1016/j.biortech.2012.07.094

    17. [17]

      VELVIZHI G, GOUD R K, MOHAN S V. Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation[J]. Bioresour Technol, 2014,115(1):214-220.  

    18. [18]

      QUAN X C, SUN B, XU H D. Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells[J]. Electrochimica Acta, 2015,182:815-820. doi: 10.1016/j.electacta.2015.09.157

    19. [19]

      WANG Huan, GUO Wa-li, WANG Hong-fa, SUN Su-rong, ZHANG Jian-jun. New technology of producing sugar by acid hydrolysis of corn straw[J]. J Anhui Agri Sci, 2007,35(35):11603-11605. doi: 10.3969/j.issn.0517-6611.2007.35.125

    20. [20]

      FENG Yu-jie, WANG Xin, WANG He-ming, YU Yan-ling, Li Dong-mei. Electricity generation from corn stover by cellulose degradation bacteria and exoelectrogenic bacteria[J]. J Environ Sci, 2009,29(11):2295-2299.  

    21. [21]

      WANG M C, YANG Z Z, XIA M C, FAN L P, ZHANG X J, Wei S H, ZOU T. Performance Improvement of Microbial Fuel Cells by Lactic Acid Bacteria and Anode Modification[J]. Environ Eng Sci, 2017,34(4):251-257. doi: 10.1089/ees.2016.0110

    22. [22]

      LIU Chun-mei. Research on the effect of anode structures on the performance of microbial fuel cells and mass transfer characteristics of anodes[D]. Chongqing:Chongqing University, 2013. 

    23. [23]

      TORRES C I, MARCUS A K, RITTMANN B E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria[J]. Biotechnol Bioeng, 2008,100(5):872-881. doi: 10.1002/bit.v100:5

    24. [24]

      ROZENDAL R A, HAMELERS H V, BUISMAN C J. Effects of membrane cation transport on pH and microbial fuel cell performance[J]. Environ Sci Technol, 2006,40(1):5206-5211.  

    25. [25]

      QU You-peng, GAO Shan-shan, LÜ Jiang-wei, LI Da, LIU Jiu-feng, TIAN Jia-yu. Application of electrochemical impedance spectroscopy in impedane test of microbial fuel cell impedance[J]. Experiment Technol Manage, 2015,32(7):68-64.  

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    3. [3]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    4. [4]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    5. [5]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    14. [14]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    15. [15]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    16. [16]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    17. [17]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(2)
  • Abstract views(2491)
  • HTML views(1235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return