Citation: GU Ying-ying, ZHANG Zhen-zhou, WANG Wen-feng, GAO Xiu-juan, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for the oxidation of dimethyl ether at low temperature[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 572-580. shu

Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for the oxidation of dimethyl ether at low temperature

  • Corresponding author: ZHANG Qing-de, qdzhang@sxicc.ac.cn
  • Received Date: 24 January 2017
    Revised Date: 31 March 2017

    Fund Project: Youth Innovation Promotion Association CAS 2014155the National Natural Science Foundation of China 20903114the National Natural Science Foundation of China 21373253

Figures(7)

  • MoO3-SnO2 catalysts with a Mo/Sn molar ratio of 1:3 was prepared by the co-precipitation method and calcined in different atmospheres (O2, air, N2 and H2); the effect of calcination atmosphere on the catalytic performance of MoO3-SnO2 in the oxidation of dimethyl ether (DME) to methyl formate (MF) was investigated. The results show that the MoO3-SnO2 catalyst prepared by calcination in O2 exhibits the highest activity; the conversion of DME reaches 25.10%, with the selectivity of 72.21% to MF. Over the catalyst calcined in H2, the conversion of DME is only 7.01%, with the selectivity of 75.82% to MF. The activity of the MoO3-SnO2 catalysts calcined at different atmospheres follows the order of O2 > air > N2 > H2. The results of XRD, Raman, XPS and ESR characterization indicate the presence of MoOx domains on the surface of the MoO3-SnO2 catalyst with a Mo/Sn molar ratio of 1:3. The terminal Mo=O groups of oligomeric MoO3 may be the active sites for the methoxy intermediate and the penta-coordinated Mo5+ species in the Mo-Sn interface may be able to promote the oxidation of DME to MF. Consequently, methoxy species are absorbed on the Mo5+ species in the Mo-Sn interfaces, which are oxidized to HCHO on the terminal Mo=O groups; after that, the absorbed HCHO may then react with the neighboring absorbed methoxy species, forming MF.
  • 加载中
    1. [1]

      WANG D S, HAN Y Z, TAN Y S, TSUBAKI N. Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis[J]. Fuel Process Technol, 2009,90(3):446-451. doi: 10.1016/j.fuproc.2008.11.007

    2. [2]

      ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol, 2016,6(15):6109-6117. doi: 10.1039/C6CY00460A

    3. [3]

      ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effect of MoO3 crystalline structure of MoO3-SnO2 catalysts on selective oxidation of glycol dimethyl ether to 1, 2-propandiol[J]. Catal Sci Technol, 2016,6(6):1842-1849. doi: 10.1039/C5CY00894H

    4. [4]

      CAO Ping, YANG Xian-gui, TANG Cong-ming, WANG Gong-yun. Molybdenum trioxide catalyst for transesterification of dimethyl carbonate and phenyl acetate to diphenyl carbonate[J]. Chin J Catal, 2009,30(9):853-855.  

    5. [5]

      LIU Jin-long, ZHU Yin-hua, WANG Huai-yuan. Hydrodesulfurization of dibenzothiophen with MoO3/TiO2 catalyst[J]. Chin J Process Eng, 2009,9(5):882-886.  

    6. [6]

      LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003,217(1):222-232.  

    7. [7]

      LIU H C, IGLESIA E. Selective oxidation of dimethylether to formaldehyde on small molybdenum oxide domains[J]. J Catal, 2002,208(1):1-5. doi: 10.1006/jcat.2002.3574

    8. [8]

      HUANG Xiu-min, XU Yi-de, SHEN Wen-jie. Selective oxidation of dimethylether to formaldehyde over supported MoOx and VOx catalysts[J]. Chin J Catal, 2004,25(4):267-271.  

    9. [9]

      HUANG X M, LIU J L, CHEN J L, XU Y D, SHEN W J. Mechanistic study of selective oxidation of dimethyl ether to formaldehyde over Alumina-supported molybdenum oxide catalyst[J]. Catal Lett, 2006,108(1/2):79-86.  

    10. [10]

      VALENTE N G. Structure and activity of Sn-Mo-O catalysts: Partial oxidation of methanol[J]. Appl Catal A: Gen, 2001,205(1/2):201-214.  

    11. [11]

      LIU Guang-bo, ZAHNG Qing-de, HAN Yi-zhuo, CHUN Fan-li, TAN Yi-sheng. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. J Fuel Chem Technol, 2013,41(2):223-227.  

    12. [12]

      LIU G B, ZHANG Q D, HAN Y Z, TAN Y S. Direct oxidation of dimethyl ether to ethanol over WO3/HZSM-5 catalysts[J]. Catal Commun, 2012,26(35):173-177.  

    13. [13]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem, 2015,17(2):1057-1064. doi: 10.1039/C4GC01591F

    14. [14]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013,15(6):1501-1504. doi: 10.1039/c3gc40279g

    15. [15]

      ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effect of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild condition[J]. Catal Sci Technol, 2016,6(9):2975-2983. doi: 10.1039/C5CY01569C

    16. [16]

      COSIMO J I, MARCHI A J, APESTEGUIA C R. Preparation of ternary Cu/Co/Al catalysts by the amorphous citrate process[J]. J Catal, 1992,134(2):594-607. doi: 10.1016/0021-9517(92)90345-I

    17. [17]

      WANG Qi, HAO Ying-juan, CHEN Ai-ping, YANG Yi-quan. Effect of thermal treatment on structure and catalytic performance of K2MoO4-NiO/SiO2 catalyst for one-step synthesis of methanethiol from high H2S-containing syngas[J]. Chin J Catal, 2010,31(2):242-247.

    18. [18]

      NIWA M, YAMADA H, MURAKAMI Y. Activity for the oxidation of methanol of a molybdena monolayer supported on tin oxide[J]. J Catal, 1992,134(1):331-339. doi: 10.1016/0021-9517(92)90232-7

    19. [19]

      STAMPF S, CHEN Y, DUMESIC J A, HILL C G. Interactions of molybdenum oxide with various oxide supports: Calcination of mechanical mixtures[J]. J Catal, 1987,105(2):445-454. doi: 10.1016/0021-9517(87)90072-8

    20. [20]

      MENG Y L, WANG T, CHEN S, GONG J L. Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3/γ-Al2O3 catalysts[J]. Appl Catal B: Environ, 2014,160-161(1):161-172.  

    21. [21]

      VALENTE N G, ARR'UA L A, CAD'US L E. Structure and activity of Sn-Mo-O catalysts: Partial oxidation of methanol[J]. Appl Catal A: Gen, 2001,205(1/2):201-214.  

    22. [22]

      RUSLAN N N, TRIWAHYONO S, JALIL A A, TIMMIATI S N, ANNUAR N H R. Study of the interaction between hydrogen and the MoO3-ZrO2 catalyst[J]. Appl Catal A: Gen, 2012,413(414):176-182.  

    23. [23]

      SOJKA Z, CHE M. Catalytic chemistry of transition metal ions on oxide surfaces[J]. C R Acad Sci, Ser Ⅱc: Chim, 2000,3(3):163-174.  

    24. [24]

      LOCHAR V. Study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst[J]. Appl Catal A: Gen, 2006,309(1):33-36. doi: 10.1016/j.apcata.2006.04.030

    25. [25]

      WHITING G T, KONDRAT S A, HAMMOND C, DIMITRATOS N, HUTCHINGS G J. Methyl formate formation from methanol oxidation using supported Gold-Palladium nanoparticles[J]. ACS Catal, 2015,5(2):637-644. doi: 10.1021/cs501728r

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    6. [6]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    17. [17]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(2)
  • Abstract views(537)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return