Effect of alkaline earth metal doping on the catalytic performance of cobalt-based spinel composite metal oxides in N2O decomposition
- Corresponding author: WANG Hong, wanghong@bipt.edu.cn CHI Yao-ling, chiyaoling@bipt.edu.cn
Citation:
LI Si-xuan, XIA Lei, LI Jing-yu, LIU Xiao-gang, SUN Jin-ru, WANG Hong, CHI Yao-ling, LI Cui-qing, SONG Yong-ji. Effect of alkaline earth metal doping on the catalytic performance of cobalt-based spinel composite metal oxides in N2O decomposition[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(11): 1377-1385.
WANG A Y, WANG Y L, WALTER E D, KUKKADAPU R K, GUO Y L, LU G Z, WEBER R S, WANG Y, PEDEN C H F, GAO F. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts[J]. J Catal, 2018,358:199-210. doi: 10.1016/j.jcat.2017.12.011
XU Xiang-yang, GU Cheng, WANG Hong, ZHANG Yuan-yuan, KE Yan, ZHANG Cheng-le, WANG Ming-jin, SONG Bao-hua, LI Cui-qing. Catalytic performance of Co/Hβ in N2O decomposition[J]. J Fuel Chem Technol, 2014,42(7):877-883.
WANG Hong, WANG Jun-li, LI Cui-qing, SONG Yong-ji, CHI Yao-ling, WANG Tao. Decomposition of N2O on ACo2O4/HZSM-5 Catalysts[J]. Acta Phys Chim Sin, 2010,26(10):2739-2744. doi: 10.3866/PKU.WHXB20100928
LIU Z M, HE F, MA L L, PENG S. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts[J]. Catal Surv Asia, 2016,20(3):1-12.
KONSOLAKIS M. Recent advances on nitrous oxide (N2O) decomposition over non-noble metal oxide catalysts:Catalytic performance, mechanistic considerations and surface chemistry aspects[J]. Acs Catal, 2015,5:6397-6421. doi: 10.1021/acscatal.5b01605
YAKOVLEV A L, ZHIDOMIROV G M, VAN SANTEN R A V. N2O decomposition catalyzed by transition metal ions[J]. Catal Lett, 2001,75:45-48. doi: 10.1023/A:1016692419859
FELLAH M F, ONAL I. N2O decomposition on Fe-and Co-ZSM-5:A density functional study[J]. Catal Today, 2008,137:410-417. doi: 10.1016/j.cattod.2007.10.114
RYDER J A, CHAKRABORTY A K, BELL A T. Density functional theory study of nitrous oxide decomposition over Fe-and Co-ZSM-5[J]. J Phys Chem B, 2002,106:7059-7064. doi: 10.1021/jp014705e
SUI C, ZHANG T R, DONG Y L, YUAN F L, NIU X Y, ZHU Y J. Interaction between Ru and Co3O4 for promoted catalytic decomposition of N2O over the Rux-Co3O4 catalysts[J]. Mol Catal, 2017,435:174-181. doi: 10.1016/j.mcat.2017.03.033
CHENG H K, HUANG Y Q, WANG A Q, LI L, WANG X D, ZHANG T. N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors[J]. Appl Catal B:Environ, 2009,89(3):391-397.
WANG Y Z, HU X B, ZHENG K, ZHANG H X, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal, 2018,123(2):707-721. doi: 10.1007/s11144-017-1293-9
IVANOVA Y A, SUTORMINA E F, ISUPOVA I A, VOVK E I. Catalytic activity of the oxide catalysts based on Ni0.75Co2.25O4 modified with cesium cations in a reaction of N2O decomposition[J]. Kinet Catal, 2017,58(6):793-799.
WANG Y Z, HU X B, ZHENG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018,111:70-74. doi: 10.1016/j.catcom.2018.04.004
LIU N, CHEN P, LI Y X, ZHANG R D. N2O Direct dissociation over MgxCeyCo1-x-yCo2O4 composite spinel metal oxide[J]. Catalysts, 2017,7(1):1-12.
WANG Y Z, HU X B, ZHENG K, ZHANG H X, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal, 2018,123(2):707-721. doi: 10.1007/s11144-017-1293-9
DUAN Y K, ZHANG Q L, SONG Z X, WANG J, TANG X S, LIU Q X, ZANG T F. Effect of preparation methods on the catalytic activity of Co3O4 for the decomposition of N2O[J]. Res Chem Intermed, 2017,43(12):7241-7255. doi: 10.1007/s11164-017-3071-8
CIURA K, GRZYBEK G, WOJCIK S, INDYK P, KOTARBA A, SOJKA Z. Optimization of cesium and potassium promoterloading in alkali-doped Zn0.4Co2.6O4 vertical bar Al2O3 catalysts for N2O abatement[J]. React Kinet Mech Catal, 2017,121(2):645-655. doi: 10.1007/s11144-017-1188-9
DOU Z, ZHANG H, PAN Y, XU X F. Catalytic decomposition of NO over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014,42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5
ZHU Z Z, LU G Z, ZHANG Z G, GUO Y, GUO Y L, WANG Y Q. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation:Effect of the preparation method[J]. Acs Catal, 2013,3(3):1154-1164.
ABDALLAH H M I, MOYO T. Structural and magnetic studies of (Mg, Sr)0.2Mn0.1Co0.7Fe2O4 nanoferrites[J]. J Alloy Compd, 2013,562(11):156-163.
LOGANATHAN A, KUMAR K. Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures[J]. Appl Nanosci, 2016,6(5):629-639. doi: 10.1007/s13204-015-0480-0
LIU Chang, XUE Li, HE Hong. Influence of alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition[J]. Acta Phys Chim Sin, 2009,25(6):1033-1039. doi: 10.3866/PKU.WHXB20090604
ZHANG Q L, TANG X S, NING P, DUAN Y K, SONG Z X, SHI Y Z. Enhancement of N2O catalytic decomposition over Ca modified Co3O4 catalyst[J]. Rsc Adv, 2015,5(63):51263-51270. doi: 10.1039/C5RA04062K
ZHEN Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. J Fuel Chem Technol, 2016,44(12):1494-1501. doi: 10.3969/j.issn.0253-2409.2016.12.013
YU H B, WANG X P. Apparent activation energies and reaction rates of N2O decomposition via different routes over Co3O4[J]. Catal Commun, 2017,106:40-43.
KIM M J, LEE S J, RYU I S, JEON M W, MOON S H, ROH H S, JEON S G. Catalytic decomposition of N2O over cobalt based spinel oxides:The role of additives[J]. Mol Catal, 2017,442:202-207. doi: 10.1016/j.mcat.2017.05.029
IVANOVA Y A, SUTORMINA E F, ISUPOVA I A, VONK E I. Catalytic activity of the oxide catalysts based on Ni0.75Co2.25O4 modified with cesium cations in a reaction of N2O decomposition[J]. Kinet Catal, 2017,58(6):793-799.
QU Z P, GAO K, FU Q, QIN Y. Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn-Co oxides prepared by two-step hydrothermal method[J]. Catal Commun, 2014,52:31-35. doi: 10.1016/j.catcom.2014.03.035
BIN F, SONG C L, LÜ G, SONG J O, CAO X F, PANG H T, WANG K P. Structural characterization and selective catalytic reduction of nitrogen oxides with ammonia:A comparison between Co/ZSM-5 and Co/SBA-15[J]. J Phys Chem C, 2012,116:26262-26274. doi: 10.1021/jp303830x
XIE P F, LUO Y J, MAQ Z, WANG L Y, HUANG C Y, YUE Y H, HUA W M, GAO Z. CoZSM-11 catalysts for N2O decomposition:Effect of preparation methods and nature of active sites[J]. Appl Catal B:Environ, 2015,170:34-42.
WU Hai-peng, FENG Ming, XU Xiu-feng. Catalytic decomposition of N2O over potassium promoted Ni-Co-Al ternary mixed oxides[J]. J Fuel Chem Technol, 2012,40(7):872-877. doi: 10.3969/j.issn.0253-2409.2012.07.017
WU Cang-cang, ZHANG Hai-jie, WANG Jian, XU Xiu-feng. The preparation parameters screening of Co-Al spinel oxides for N2O catalytic decomposition[J]. J Mol Catal (China), 2016,30(1):62-71.
LI X, YANG Z C, QI W, LI Y T, WU Y, ZHOUu S X, HUANG S, WEI J, LI H J, YAO P. Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance[J]. Appl Surf Sci, 2016,363:381-388. doi: 10.1016/j.apsusc.2015.12.039
LÜ L, SU Y G, LIU X Q, ZHENG H Y, WANG X J. Synthesis of cellular-like Co3O4 nanocrystals with controlled structural, electronic and catalytic properties[J]. J Alloy Compd, 2013,553:163-166. doi: 10.1016/j.jallcom.2012.10.164
WU Z X, DENG J G, LIU Y X, XIE S H, JIANG Y, ZHAO X T, YANG J, ARANDIYA NRABDIYAN H, GUO G S, DAI H X. Three-dimensionally ordered mesoporous Co3O4-supported Au-Pd alloy nanoparticles:High-performance catalysts for methane combustion[J]. J Catal, 2015,332:13-24. doi: 10.1016/j.jcat.2015.09.008
YAN Z X, XU Z H, CHENG B, JIANG C J. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature[J]. Appl Surf Sci, 2017,404:426-434. doi: 10.1016/j.apsusc.2017.02.010
WANG Z, WANG W Z, ZHANG L, JIANG D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature[J]. Catal Sci Technol, 2016,6(11):3845-3853. doi: 10.1039/C5CY01709B
YU, WANG, WU, CH, Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chem Eng J, 2018,334:800-806. doi: 10.1016/j.cej.2017.10.079
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Pingping LU , Shuguang ZHANG , Peipei ZHANG , Aiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
Qilin YU , Yifei XU , Pengjun ZHANG , Shuwei HAO , Chongqiang ZHU , Chunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
a: Co3O4; b: Mg0.5Co2.5O4; c: Ca0.5Co2.5O4; d1: Sr0.1Co2.9O4; d2: Sr0.3Co2.7O4; d3: Sr0.5Co2.5O4; d4: Sr0.7Co2.3O4; d5: Sr0.9Co2.1O4; e: Ba0.5Co2.5O4
(a): Co3O4; (b): Mg0.5Co2.5O4; (c): Ca0.5Co2.5O4; (d)1: Sr0.1Co2.9O4; (d)2: Sr0.3Co2.7O4; (d3): Sr0.5Co2.5O4; (d4): Sr0.7Co2.3O4; (d5): Sr0.9Co2.1O4; (e): Ba0.5Co2.5O4
a: Co3O4; b: Mg0.5Co2.5O4; c: Ca0.5Co2.5O4; d: Ba0.5Co2.5O4; e: Sr0.1Co2.9O4; f: Sr0.3Co2.7O4; g: Sr0.5Co2.5O4; h: Sr0.7Co2.3O4; i: Sr0.9Co2.1O4
a: Co3O4; b: Mg0.5Co2.5O4; c: Ca0.5Co2.5O4; d1: Sr0.1Co2.9O4; d2: Sr0.3Co2.7O4; d3: Sr0.5Co2.5O4; d4: Sr0.7Co2.3O4; d5: Sr0.9Co2.1O4; e: Ba0.5Co2.5O4
a: Co3O4; b: Ba0.5Co2.5O4; c: Sr0.1Co2.9O4; d: Sr0.3Co2.7O4; e: Sr0.5Co2.5O4; f: Sr0.7Co2.3O4; g: Sr0.9Co2.1O4