Citation: LI Si-xuan, XIA Lei, LI Jing-yu, LIU Xiao-gang, SUN Jin-ru, WANG Hong, CHI Yao-ling, LI Cui-qing, SONG Yong-ji. Effect of alkaline earth metal doping on the catalytic performance of cobalt-based spinel composite metal oxides in N2O decomposition[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1377-1385. shu

Effect of alkaline earth metal doping on the catalytic performance of cobalt-based spinel composite metal oxides in N2O decomposition

  • Corresponding author: WANG Hong, wanghong@bipt.edu.cn CHI Yao-ling, chiyaoling@bipt.edu.cn
  • Received Date: 16 July 2018
    Revised Date: 23 August 2018

    Fund Project: the National Natural Science Foundation of China 21343009the National Natural Science Foundation of China U1662103the National Natural Science Foundation of China 2167329the Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology BZ041420180007The project was supported by the National Natural Science Foundation of China (21343009, U1662103, 2167329), the Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology (BZ041420180007) and the Beijing College Students Innovation and Entrepreneurship Training Program (2018J00035)the Beijing College Students Innovation and Entrepreneurship Training Program 2018J00035

Figures(6)

  • A series of cobalt-based spinel composite metal oxides doped with alkaline earth metals, viz., MxCo3-xO4 (M=Mg, Ca, Sr and Ba; x=0, 0.1, 0.3, 0.5, 0.7 and 0.9), were prepared by the coprecipitation method and characterized by XRD, SEM, nitrogen sorption, H2-TPR, O2-TPD-MS and XPS; the effect of alkaline earth metal doping on the catalytic performance of MxCo3-xO4 composites in N2O decomposition was investigated in a fixed bed micro-reactor. The results showed that after doping with the alkaline earth metals, the particle size of MxCo3-xO4 catalysts is decreased, accompanying with an increase in the specific surface area and the amount of surface adsorbed oxygen and Co2+ species. Meanwhile, the redox performance and catalytic activity of MxCo3-xO4 in N2O decomposition are also greatly enhanced. Under the conditions of 0.68% N2O, 3% O2 and Ar as balance gas, the Sr0.7Co2.3O4 catalyst doped with Sr (x=0.7) exhibits highest activity in N2O decomposition; the reaction temperatures where the N2O conversion reaches 10% and 95% are as low as 312 and 451℃, respectively.
  • 加载中
    1. [1]

      WANG A Y, WANG Y L, WALTER E D, KUKKADAPU R K, GUO Y L, LU G Z, WEBER R S, WANG Y, PEDEN C H F, GAO F. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts[J]. J Catal, 2018,358:199-210. doi: 10.1016/j.jcat.2017.12.011

    2. [2]

      XU Xiang-yang, GU Cheng, WANG Hong, ZHANG Yuan-yuan, KE Yan, ZHANG Cheng-le, WANG Ming-jin, SONG Bao-hua, LI Cui-qing. Catalytic performance of Co/Hβ in N2O decomposition[J]. J Fuel Chem Technol, 2014,42(7):877-883.  

    3. [3]

      WANG Hong, WANG Jun-li, LI Cui-qing, SONG Yong-ji, CHI Yao-ling, WANG Tao. Decomposition of N2O on ACo2O4/HZSM-5 Catalysts[J]. Acta Phys Chim Sin, 2010,26(10):2739-2744. doi: 10.3866/PKU.WHXB20100928

    4. [4]

      LIU Z M, HE F, MA L L, PENG S. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts[J]. Catal Surv Asia, 2016,20(3):1-12.  

    5. [5]

      KONSOLAKIS M. Recent advances on nitrous oxide (N2O) decomposition over non-noble metal oxide catalysts:Catalytic performance, mechanistic considerations and surface chemistry aspects[J]. Acs Catal, 2015,5:6397-6421. doi: 10.1021/acscatal.5b01605

    6. [6]

      YAKOVLEV A L, ZHIDOMIROV G M, VAN SANTEN R A V. N2O decomposition catalyzed by transition metal ions[J]. Catal Lett, 2001,75:45-48. doi: 10.1023/A:1016692419859

    7. [7]

      FELLAH M F, ONAL I. N2O decomposition on Fe-and Co-ZSM-5:A density functional study[J]. Catal Today, 2008,137:410-417. doi: 10.1016/j.cattod.2007.10.114

    8. [8]

      RYDER J A, CHAKRABORTY A K, BELL A T. Density functional theory study of nitrous oxide decomposition over Fe-and Co-ZSM-5[J]. J Phys Chem B, 2002,106:7059-7064. doi: 10.1021/jp014705e

    9. [9]

      SUI C, ZHANG T R, DONG Y L, YUAN F L, NIU X Y, ZHU Y J. Interaction between Ru and Co3O4 for promoted catalytic decomposition of N2O over the Rux-Co3O4 catalysts[J]. Mol Catal, 2017,435:174-181. doi: 10.1016/j.mcat.2017.03.033

    10. [10]

      CHENG H K, HUANG Y Q, WANG A Q, LI L, WANG X D, ZHANG T. N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors[J]. Appl Catal B:Environ, 2009,89(3):391-397.  

    11. [11]

      WANG Y Z, HU X B, ZHENG K, ZHANG H X, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal, 2018,123(2):707-721. doi: 10.1007/s11144-017-1293-9

    12. [12]

      IVANOVA Y A, SUTORMINA E F, ISUPOVA I A, VOVK E I. Catalytic activity of the oxide catalysts based on Ni0.75Co2.25O4 modified with cesium cations in a reaction of N2O decomposition[J]. Kinet Catal, 2017,58(6):793-799.  

    13. [13]

      WANG Y Z, HU X B, ZHENG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018,111:70-74. doi: 10.1016/j.catcom.2018.04.004

    14. [14]

      LIU N, CHEN P, LI Y X, ZHANG R D. N2O Direct dissociation over MgxCeyCo1-x-yCo2O4 composite spinel metal oxide[J]. Catalysts, 2017,7(1):1-12.

    15. [15]

      WANG Y Z, HU X B, ZHENG K, ZHANG H X, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal, 2018,123(2):707-721. doi: 10.1007/s11144-017-1293-9

    16. [16]

      DUAN Y K, ZHANG Q L, SONG Z X, WANG J, TANG X S, LIU Q X, ZANG T F. Effect of preparation methods on the catalytic activity of Co3O4 for the decomposition of N2O[J]. Res Chem Intermed, 2017,43(12):7241-7255. doi: 10.1007/s11164-017-3071-8

    17. [17]

      CIURA K, GRZYBEK G, WOJCIK S, INDYK P, KOTARBA A, SOJKA Z. Optimization of cesium and potassium promoterloading in alkali-doped Zn0.4Co2.6O4 vertical bar Al2O3 catalysts for N2O abatement[J]. React Kinet Mech Catal, 2017,121(2):645-655. doi: 10.1007/s11144-017-1188-9

    18. [18]

      DOU Z, ZHANG H, PAN Y, XU X F. Catalytic decomposition of NO over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014,42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5

    19. [19]

      ZHU Z Z, LU G Z, ZHANG Z G, GUO Y, GUO Y L, WANG Y Q. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation:Effect of the preparation method[J]. Acs Catal, 2013,3(3):1154-1164.  

    20. [20]

      ABDALLAH H M I, MOYO T. Structural and magnetic studies of (Mg, Sr)0.2Mn0.1Co0.7Fe2O4 nanoferrites[J]. J Alloy Compd, 2013,562(11):156-163.  

    21. [21]

      LOGANATHAN A, KUMAR K. Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures[J]. Appl Nanosci, 2016,6(5):629-639. doi: 10.1007/s13204-015-0480-0

    22. [22]

      LIU Chang, XUE Li, HE Hong. Influence of alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition[J]. Acta Phys Chim Sin, 2009,25(6):1033-1039. doi: 10.3866/PKU.WHXB20090604

    23. [23]

      ZHANG Q L, TANG X S, NING P, DUAN Y K, SONG Z X, SHI Y Z. Enhancement of N2O catalytic decomposition over Ca modified Co3O4 catalyst[J]. Rsc Adv, 2015,5(63):51263-51270. doi: 10.1039/C5RA04062K

    24. [24]

      ZHEN Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. J Fuel Chem Technol, 2016,44(12):1494-1501. doi: 10.3969/j.issn.0253-2409.2016.12.013 

    25. [25]

      YU H B, WANG X P. Apparent activation energies and reaction rates of N2O decomposition via different routes over Co3O4[J]. Catal Commun, 2017,106:40-43.  

    26. [26]

      KIM M J, LEE S J, RYU I S, JEON M W, MOON S H, ROH H S, JEON S G. Catalytic decomposition of N2O over cobalt based spinel oxides:The role of additives[J]. Mol Catal, 2017,442:202-207. doi: 10.1016/j.mcat.2017.05.029

    27. [27]

      IVANOVA Y A, SUTORMINA E F, ISUPOVA I A, VONK E I. Catalytic activity of the oxide catalysts based on Ni0.75Co2.25O4 modified with cesium cations in a reaction of N2O decomposition[J]. Kinet Catal, 2017,58(6):793-799.  

    28. [28]

      QU Z P, GAO K, FU Q, QIN Y. Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn-Co oxides prepared by two-step hydrothermal method[J]. Catal Commun, 2014,52:31-35. doi: 10.1016/j.catcom.2014.03.035

    29. [29]

      BIN F, SONG C L, LÜ G, SONG J O, CAO X F, PANG H T, WANG K P. Structural characterization and selective catalytic reduction of nitrogen oxides with ammonia:A comparison between Co/ZSM-5 and Co/SBA-15[J]. J Phys Chem C, 2012,116:26262-26274. doi: 10.1021/jp303830x

    30. [30]

      XIE P F, LUO Y J, MAQ Z, WANG L Y, HUANG C Y, YUE Y H, HUA W M, GAO Z. CoZSM-11 catalysts for N2O decomposition:Effect of preparation methods and nature of active sites[J]. Appl Catal B:Environ, 2015,170:34-42.  

    31. [31]

      WU Hai-peng, FENG Ming, XU Xiu-feng. Catalytic decomposition of N2O over potassium promoted Ni-Co-Al ternary mixed oxides[J]. J Fuel Chem Technol, 2012,40(7):872-877. doi: 10.3969/j.issn.0253-2409.2012.07.017 

    32. [32]

      WU Cang-cang, ZHANG Hai-jie, WANG Jian, XU Xiu-feng. The preparation parameters screening of Co-Al spinel oxides for N2O catalytic decomposition[J]. J Mol Catal (China), 2016,30(1):62-71.  

    33. [33]

      LI X, YANG Z C, QI W, LI Y T, WU Y, ZHOUu S X, HUANG S, WEI J, LI H J, YAO P. Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance[J]. Appl Surf Sci, 2016,363:381-388. doi: 10.1016/j.apsusc.2015.12.039

    34. [34]

      LÜ L, SU Y G, LIU X Q, ZHENG H Y, WANG X J. Synthesis of cellular-like Co3O4 nanocrystals with controlled structural, electronic and catalytic properties[J]. J Alloy Compd, 2013,553:163-166. doi: 10.1016/j.jallcom.2012.10.164

    35. [35]

      WU Z X, DENG J G, LIU Y X, XIE S H, JIANG Y, ZHAO X T, YANG J, ARANDIYA NRABDIYAN H, GUO G S, DAI H X. Three-dimensionally ordered mesoporous Co3O4-supported Au-Pd alloy nanoparticles:High-performance catalysts for methane combustion[J]. J Catal, 2015,332:13-24. doi: 10.1016/j.jcat.2015.09.008

    36. [36]

      YAN Z X, XU Z H, CHENG B, JIANG C J. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature[J]. Appl Surf Sci, 2017,404:426-434. doi: 10.1016/j.apsusc.2017.02.010

    37. [37]

      WANG Z, WANG W Z, ZHANG L, JIANG D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature[J]. Catal Sci Technol, 2016,6(11):3845-3853. doi: 10.1039/C5CY01709B

    38. [38]

      YU, WANG, WU, CH, Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chem Eng J, 2018,334:800-806. doi: 10.1016/j.cej.2017.10.079

  • 加载中
    1. [1]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    5. [5]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    11. [11]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    16. [16]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    17. [17]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

Metrics
  • PDF Downloads(14)
  • Abstract views(923)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return