Citation: Wang Zhe, Zhao Zhixi. Research Advances of the Adsorption-Desorption Mechanism in Arsenic Mobilization and Retention[J]. Chemistry, ;2020, 83(1): 23-29. shu

Research Advances of the Adsorption-Desorption Mechanism in Arsenic Mobilization and Retention

  • Corresponding author: Zhao Zhixi, zhixizhao@qq.com
  • Received Date: 14 August 2019
    Accepted Date: 6 November 2019

Figures(1)

  • High arsenic pollution in groundwater is a global environmental issue. Under specific geological, geomorphological, climatic and hydrological and hydrochemical conditions, arsenic-containing minerals undergo adsorption and desorption reactions. Therefore the arsenic was released into groundwater and caused the formation of high arsenic groundwater. Based on the previous researches, the mechanism of adsorption-desorption during arsenic migration and intention in groundwater was analyzed and summarized. Effects of competitive adsorption, redox, pH and organic matter on arsenic adsorption-desorption were discussed from the aspects of adsorbate and adsorbent. Three mechanisms on arsenic adsorption-desorption, i.e. electrostatic attraction mechanism, ion exchange mechanism and complexation species mechanism, were summarized. This paper can provide useful help for revealing the mechanism of high arsenic groundwater and conducting arsenic pollution control and treatment.
  • 加载中
    1. [1]

      Zhao H S, Stanforth R. Environ. Sci. Technol., 2001, 35(24):4753~4757. 

    2. [2]

      Acharyya S K, Chakraborty P, Lahiri S, et al. Nature, 1999, 401(6753):545~547. 

    3. [3]

      Appelo C A J, Tournassat C, Charlet L, et al. Environ. Sci. Technol., 2002, 36(14):3096~3103. 

    4. [4]

      Anawar H M, J Akai, H Sakugawa. Chemosphere, 2004, 54(6):753~762. 

    5. [5]

      Radu T, Subacz J L, Phillippi J M, et al. Environ. Sci. Technol., 2005, 39(20):7875~7882. 

    6. [6]

      Christl I, Brechbühl Y, Graf M, et al. Environ. Sci. Technol., 2012, 46(24):13235~13243. 

    7. [7]

      Xu H, Allard B, Grimvall A. Water Air Soil Pollut., 1988, 40(3-4):293~305. 

    8. [8]

      Myneni S C B, Traina S J, Logan T J, et al. Environ. Sci. Technol., 1997, 31(6):1761~1768. 

    9. [9]

      Horneman A, Geen A V, Kent D V, et al. Geochim. Cosmochim. Acta, 2004, 68(17):3459~3473. 

    10. [10]

      Handler R M, Beard B L, Johnson C M, et al. Environ. Sci. Technol., 2009, 43(4):1102~1107. 

    11. [11]

      Mohan D, Pittman C U. J. Hazard. Mater., 2007, 142(1):1~53. 

    12. [12]

      Tufano K J, Reyes C, Saltikov C W, et al. Environ. Sci. Technol., 2008, 42(22):8283~8289. 

    13. [13]

      Manning B A, Goldberg S. Environ. Sci. Technol., 1997, 31(7):2005~2011. 

    14. [14]

      Smedley P L, Kinniburgh D G A. Appl. Geochem., 2002, 17(5):517~568. 

    15. [15]

      Charlet L, Chakraborty S,Appelo C A J, et al. Appl. Geochem., 2007, 22(7):1273~1292. 

    16. [16]

      Stollenwerk K G. Arsenic in Ground Water, 2003, Springer, Boston, MA:67~100. 

    17. [17]

      Takahash Yi, Mina Yi, Ambe S, et al. Geochim. Cosmochim. Acta, 1999, 63(6):815~836. 

    18. [18]

      Grafe M. Virginia:Virginia Polytechnic Institute and State University, 2001. 

    19. [19]

      Grafe M, Eick M J, Grossl P R, et al. J. Environ. Qual., 2002, 31(4):1115~1123. 

    20. [20]

      Redman A D, Macalady D L, Ahmann D. Environ. Sci. Technol., 2002, 36(13):2889~2896. 

    21. [21]

      de Oliveira L K, de Almeida Melo C, Fraceto L F, et al. Environ. Sci. Pollut. Res., 2016, 23(7):6205~6216. 

    22. [22]

      Mukhopadhyay R, Manjaiah K M, Datta S C, et al. J. Hazard. Mater., 2019, 377:124~131. 

    23. [23]

      Deng Y X, Weng L P, Li Y T, et al. Water Res., 2019, 157:372~380. 

    24. [24]

      Ying S C, Kocar B D, Fendorf S. Geochim. Cosmochim. Acta, 2012, 96(11):294~303. 

    25. [25]

      Li F H, Geng D, Cao Q. Desalin. Water Treat., 2015, 56(7):1829~1838. 

    26. [26]

       

    27. [27]

      Welch A H, Westjohn D B, Helsel D R, et al. Groundwater, 2000, 38(4):589~604. 

    28. [28]

      Corwin D L, David A, Goldberg S. J. Contam. Hydrol., 1999, 39(1-2):35~58. 

    29. [29]

      Chowdhury T R, Basu G K, Mandal B K, et al. Nature, 1999, 401(6753):545~546. 

    30. [30]

      Swartz C H, Blute N K, Badruzzman B, et al. Geochim. Cosmochim. Acta, 2004, 68(22):4539~4557. 

    31. [31]

      Harvey C F, Swartz C H, Badruzzaman A B M, et al. Science, 2002, 298(5598):1602~1606. 

    32. [32]

      Savage K S, Tingle T N, O'Day P A, et al. Appl. Geochem., 2000, 15(8):1219~1244. 

    33. [33]

       

    34. [34]

       

    35. [35]

       

    36. [36]

       

    37. [37]

      Mikutta R, Lorenz D, Guggenberger G, et al. Geochim. Cosmochim. Acta, 2014, 144:258~276. 

    38. [38]

       

    39. [39]

      Chen Y, Huang W G, Zha D J, et al. Hearing Res., 2007, 226(1):178~182. 

    40. [40]

       

    41. [41]

       

    42. [42]

      Jain C K, Ali I. Water Res., 2000, 34(17):4304~4312. 

    43. [43]

       

    44. [44]

      Yang M Q, He J H, Hu M Z, et al. Sens. Actuat. B, 2015, 213:59~64. 

    45. [45]

      Pena M E, Korfiatis G P, Patal M, et al. Water Res., 2005, 39(11):2327~2337. 

    46. [46]

       

    47. [47]

      Jain A, Raven K P, Loeppert R H. Environ. Sci. Technol., 1999, 33(8):1179~1184. 

    48. [48]

       

    49. [49]

       

    50. [50]

      Pecini E M, Springer V, Brigante M, et al. J. Environ. Chem. Eng., 2017, 5(5):4917~4922. 

  • 加载中
    1. [1]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    2. [2]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    3. [3]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    4. [4]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    5. [5]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    13. [13]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    17. [17]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    18. [18]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    19. [19]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(20)
  • Abstract views(1793)
  • HTML views(358)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return