Citation: MEI Li-bin, LIU Xin-min. Preparation, characterization and CO2 adsorption of ion exchange resin supported solid amine adsorbents[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 880-888. shu

Preparation, characterization and CO2 adsorption of ion exchange resin supported solid amine adsorbents

  • Corresponding author: LIU Xin-min, lxm220@qust.edu.cn
  • Received Date: 8 March 2017
    Revised Date: 6 May 2017

    Fund Project: the Shandong Province Science and Technology Development Project 2010GGX10709

Figures(10)

  • A series of solid amine adsorbents were prepared by using three different preparation methods with ion exchange resin (D001) as carrier and with tetraethylenepentamine (TEPA) as modifier. The sorbents were characterized by nitrogen adsorption/desorption, Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) techniques. The effects of TEPA loadings, adsorption temperatures, influent gas flow rates and CO2 partial pressure on the CO2 adsorption capacity in a fixed bed reactor were investigated. The results show that the solid amine adsorbent prepared by the coordination method has a better dispersibility and stability, and the maximum CO2 adsorption capacity is 4 mmol/g when the TEPA loading is 40%, the adsorption temperature is 65 ℃ and the influent gas flow rate is 40 mL/min. The amount of CO2 adsorption only decreases by 3.98% and remains almost unchanged after 10 cycles of desorption and desorption. The study of thermodynamics and kinetics indicates that the adsorption mechanism is dominated by both chemical and physical adsorption.
  • 加载中
    1. [1]

      TSENG R L, WU F C, JUANG R S. Adsorption of CO2 at atmospheric pressure on activated carbons prepared from melamine-modified phenol-formaldehyde resins[J]. Sep Purif Technol, 2015,140(1):53-60.  

    2. [2]

      NILANTHA P W, MIETEK J. Activated carbon spheres for CO2 adsorption[J]. ACS Appl Mater Interfaces, 2013,5(2):1849-1855.  

    3. [3]

      ARUNKUMAR S, ZHAO A, GEORGE K H, PARTHA S, RAJENDER G. Post-combustion CO2 capture using solid Sorbents:A review[J]. Ind Eng Chem Res, 2012,51(10):1438-1463.  

    4. [4]

      FIGUEROA J D, FOUT T, PLASYNSKI S, MCILVERIED H, SRIVASTAVA R D. Advances in CO2capture technology-The U.S. department of energy's carbon sequestration program:A review[J]. Int J Green Gas Con, 2008,2(7):9-20.  

    5. [5]

      WANG X, GUO Q J, KONG T T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2capture[J]. Chem Eng J, 2015,273(3):472-480.  

    6. [6]

      KHATRI R A, CHUANG S C, SONG Y. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capure[J]. Energy Fuels, 2006,20(4):1514-1520. doi: 10.1021/ef050402y

    7. [7]

      LIU Zhi-lin, TENG Yang, ZHANG Kai, CAO Yan, PAN Wei-ping. The CO2adsorption and thermal stability of MCM-41 modified by different organic amines[J]. J Fuel Chem Technol, 2013,41(4):469-476.  

    8. [8]

      LEE S, FILBURN T P, GRAY M, PARK J W, SONG H J. Screening test of solid amine sorbents for CO2 capture[J]. Ind Eng Chem Res, 2008,47(8):7419-7423.  

    9. [9]

      GRAY M L, HOFFMAN J S, HREHA D C, FAUTH D J, HEDGES S W, CHAMPAGNE K J, PENNLINE H W. Parametric study of solid amine sorbents for the capture of carbon dioxide[J]. Energy Fuels, 2009,23(9):4840-4844.  

    10. [10]

      ALESI W R, KITCHIN J R. Evaluation of a primary amine-functionalized ion-exchange resin for CO2 capture[J]. Ind Eng Chem Res, 2012,51(5):6907-6915.  

    11. [11]

      ZHANG Xue-shi, LIU Xin-min. Preparation and performance of modified molecular sieve for carbon dioxide capture[J]. J Environ Eng, 2015,9(10):4995-4999. doi: 10.12030/j.cjee.20151060

    12. [12]

      HU J X, WANG G C, JIANG T. Preparation and performance of sulphonated polystyrene[J]. Colloid Polym Sci, 2012,30(1):36-38.  

    13. [13]

      WANG X, CHEN L L, GUO Q J. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture[J]. Chem Eng J, 2015,260(9):573-581.  

    14. [14]

      CHEN Z H, DENG S B, WEI H R, WANG B, HUANG J, YU G. Polyethylenimine-impregnated resin for high CO2 adsorption:An efficient adsorbent for capture from simulated flue gas and ambient air[J]. ACS Appl Mater Interfaces, 2013,5(6):6937-6945.  

    15. [15]

      CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. J Fuel Chem Technol, 2015,43(1):108-115.  

    16. [16]

      MEILS S D, WANG S X, MARTHA A, ARLLANO T, ROBERT J F. CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas:An update[J]. J CO2 Util, 2016,15(9):65-71.  

    17. [17]

      HUANG H Y, YANG R T, CHINN D, MUNSON C L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J]. Ind Eng Chem Res, 2003,42(12):2427-2433. doi: 10.1021/ie020440u

    18. [18]

      RODRIGO S G, ABDELHAMID S. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2:Kinetics and breakthrough curves[J]. Chem Eng J, 2010,161(7):182-190.

    19. [19]

      LOGANATHAN S, TIKMANI M, EDUBILLI S. CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature[J]. Chem Eng J, 2014,256(11):1-8.  

    20. [20]

      ALIAKBAR H G, ABDELHAMID S. CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica:Experimental and kinetic modeling[J]. Chem Eng J, 2011,173(1):72-79. doi: 10.1016/j.cej.2011.07.038

  • 加载中
    1. [1]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    2. [2]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    4. [4]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    5. [5]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    9. [9]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    10. [10]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    12. [12]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    13. [13]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    18. [18]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(11)
  • Abstract views(1396)
  • HTML views(353)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return